Climatic Change

, Volume 105, Issue 3–4, pp 469–488 | Cite as

Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile

  • Sebastian Vicuña
  • René D. GarreaudEmail author
  • James McPhee


In this paper we present an analysis of the direct impacts of climate change on the hydrology of the upper watersheds (range in elevation from 1,000 to 5,500 m above sea level) of the snowmelt-driven Limarí river basin, located in north-central Chile (30° S, 70° W). A climate-driven hydrology and water resources model was calibrated using meteorological and streamflow observations and later forced by a baseline and two climate change projections (A2, B2) that show an increase in temperature of about 3–4°C and a reduction in precipitation of 10–30% with respect to baseline. The results show that annual mean streamflow decreases more than the projected rainfall decrease because a warmer climate also enhances water losses to evapotranspiration. Also in future climate, the seasonal maximum streamflow tends to occur earlier than in current conditions, because of the increase in temperature during spring/summer and the lower snow accumulation in winter.


Streamflow Snow Water Equivalent Annual Streamflow Water Resource Model Streamflow Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aceituno P (1988) On the functioning of the Southern Oscillation in the South American Sector, part I: surface climate. Mon Weather Rev 116:505–524CrossRefGoogle Scholar
  2. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309CrossRefGoogle Scholar
  3. CAZALAC (2006) Aplicación de metodologías para determinar la eficiencia de uso del agua estudio de caso en la región de Coquimbo, Elaborado por CAZALAC; con la asesoría de RODHOS Asesorías y Proyectos Ltda; Gobierno Regional - Región de Coquimbo, p 893Google Scholar
  4. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon RT, Laprise R, Magaña V, Mearns CG, Menendez CG, Raisanen J, Rinde A, Sarr A, Whetton P (2007) Regional climate projections’. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  5. Falvey M, Garreaud R (2007) Wintertime precipitation episodes in Central Chile: associated meteorological conditions and orographic influences. J Hydrometeorol 8:171–193CrossRefGoogle Scholar
  6. Favier V, Falvey M, Rabatel A, Praderio E, López D (2009) Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile’s Norte Chico region (26–32°S). Water Resour Res 45:W02424. doi: 10.1029/2008WR006802 CrossRefGoogle Scholar
  7. Fuenzalida H, Aceituno P, Falvey M, Garreaud R, Rojas M, Sanchez R (2007) ‘Study on Climate Variability for Chile during the 21st century’. Technical Report prepared for the National Environmental Committee (in Spanish). Available on-line at (August 2007)
  8. Garreaud R (1992) Estimación de la altura de la línea de nieve en cuencas de Chile central’. Rev Chil Ing Hidráulica 7:21–32Google Scholar
  9. Gordon C, Cooper C, Senior CA, Banks J, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extent and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147CrossRefGoogle Scholar
  10. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met. Office Hadley Center, Exeter, p 40Google Scholar
  11. Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios. Cambridge University Press, New YorkGoogle Scholar
  12. Parry ML, Canziani OF, Palutikof JP et al (2007) Technical summary. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel’ on climate change. Cambridge University Press, Cambridge, pp 23–78Google Scholar
  13. Pope VD, Pamment JA, Jackson DR, Slingo A (2001) The representation of water vapor and its dependence on vertical resolution in the Hadley Centre Climate Model. J Climate 14:3065–3085CrossRefGoogle Scholar
  14. Purkey D, Joyce B, Vicuna S, Hanemann M, Dale L, Yates D, Dracup JA (2008) Robust analysis of future climate change impacts on water for agriculture and other sectors: a case study in the Sacramento Valley. Clim Change 87:109–122CrossRefGoogle Scholar
  15. Rutllant J, Fuenzalida H (1991) Synoptic aspects of central rainfall variability associated with the Southern Oscillation. Int J Climatol 11:63–76CrossRefGoogle Scholar
  16. Stewart IT, Cayan DR, Dettinger MD (2005) Changes toward earlier streamflow timing across Western North America. J Climate 18(8):1136–1155CrossRefGoogle Scholar
  17. Vera C, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:13CrossRefGoogle Scholar
  18. Vicuna S, Dracup JA (2007) The evolution of climate change impact studies on hydrology and water resources in California. Clim Change 82(3–4):327–350CrossRefGoogle Scholar
  19. Weglarczyk S (1998) The interdependence and applicability of some statistical quality measures for hydrological models. J Hydrol 206:98–103CrossRefGoogle Scholar
  20. Wigley TML, Jones PD (1985) Influences of precipitation changes and direct CO2 effects on streamflow. Nature 314:149–152CrossRefGoogle Scholar
  21. Yates D (1996) WatBal: an integrated water balance model for climate impact assessment of river basin runoff. Water Resour Dev 12(2):121–139CrossRefGoogle Scholar
  22. Yates D, Sieber J, Purkey D, Huber-Lee A, Galbraith H (2005a) WEAP21: a demand, priority, and preference driven water planning model: part 2, Aiding freshwater ecosystem service evaluation. Water Int 30(4):487–500CrossRefGoogle Scholar
  23. Yates D, Sieber J, Purkey D, Huber-Lee A (2005b) WEAP21: a demand, priority, and preference driven water planning model: part 1, model characteristics. Water Int 30(4):501–512CrossRefGoogle Scholar
  24. Yates D, Purkey D, Sieber J, Huber-Lee A, Galbraith H, West J, Herrod-Julius S, Young C, Joyce B, Rayej M (2009) Climate driven water resources model of the Sacramento Basin, California. J Water Resour Plan Manage 135(5):303–313CrossRefGoogle Scholar
  25. Young CA, Escobar-Arias MI, Fernandes M, Joyce B, Kiparsky M, Mount JF, Mehta VK, Purkey D, Viers JH, Yates D (2009) Modeling the hydrology of climate change in California’s Sierra Nevada for subwatershed scale adaptation. J Am Water Resour Assoc (JAWRA) 45(6):1409–1423CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sebastian Vicuña
    • 1
  • René D. Garreaud
    • 2
    Email author
  • James McPhee
    • 3
  1. 1.Centro Interdisciplinario de Cambio GlobalPontificia Universidad Catolica de ChileSantiagoChile
  2. 2.Department of Geophysics and Advanced Mining Technology Center, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  3. 3.Department of Civil Engineering and Advanced Mining Technology Center, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile

Personalised recommendations