Advertisement

Climatic Change

, Volume 105, Issue 1–2, pp 243–262 | Cite as

A 400-year reconstruction of July relative air humidity for the Vienna region (eastern Austria) based on carbon and oxygen stable isotope ratios in tree-ring latewood cellulose of oaks (Quercus petraea Matt. Liebl.)

  • Marika HauptEmail author
  • Martin Weigl
  • Michael Grabner
  • Tatjana Boettger
Article

Abstract

Stable isotope chronologies of carbon and oxygen for the period from 1600 to 2003 and of non-exchangeable hydrogen for the last century were constructed base upon tree-ring latewood cellulose from oaks (Quercus petraea Matt. Liebl.) grown in the Vienna region (Austria). The stable isotope ratios reflect highly significantly the summer climate conditions. For the reconstruction of temperature and relative air humidity, verifiable bivariate linear regression models were calculated. Hydrogen isotope values clearly enhanced the model verification. The reconstruction of July relative air humidity in the region Vienna (Austria) for the last 400 years was carried out with carbon and oxygen stable isotope ratios. During this period the humidity oscillated around a mean of 74.7 ± 4.4% with wet and dry periods in a cycle of approximately 130 years. Predominant wet conditions were reconstructed for the periods 1690–1710, 1765–1820 and 1900–1960, predominant dry periods for 1715 to 1730, 1830 to 1870 and from approximately 1960 to present. Extreme wet months of July were identified in the years 1663, 1795, 1816, 1906, 1915 and 1926, exceptionally dry were inferred for 1616, 1636, 1637, 1751, 1822, 1857, 1863, 1990, 1992 and 2001.

Keywords

Tree Ring Stable Isotope Ratio Oxygen Isotope Ratio Quercus Petraea Hydrogen Isotope Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson WT, Bernasconi SM, McKenzie JA, Saurer M, Schweingruber F (2002) Model evaluation for reconstructing the oxygen isotopic composition in precipitation from tree ring cellulose over the last century. Chem Geol 182:121–137CrossRefGoogle Scholar
  2. Aykroyd RG, Lucy D, Pollard AM, Carter AHC, Robertson I (2001) Temporal variability in the strength of proxy-climate correlations. Geophys Res Lett 28(8):1559–1562CrossRefGoogle Scholar
  3. Boettger T, Friedrich M (2009) The use of serial pooling of tree rings for construction of stable isotope chronologies. Isot Environ Health Stud 45:71–83CrossRefGoogle Scholar
  4. Boettger T, Haupt M, Knöller K, Weise SM, Waterhouse JS, Rinne KT, Loader NJ, Sonninen E, Jungner H, Masson-Delmotte V, Stievenard M, Guillemine MT, Pierre M, Pazdur A, Leuenberger M, Filot M, Saurer M, Reynolds CE, Helle G, Schleser GH (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ 13C, δ 18O and non-exchangeable δ 2H values on cellulose, sugar and starch: an inter-laboratory comparison. Anal Chem 79:4603–4612CrossRefGoogle Scholar
  5. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801CrossRefGoogle Scholar
  6. Briffa K, Jones PD (1992) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Kluwer Academic, DordrechtGoogle Scholar
  7. Briffa KR, Jones PD, Vogel RB, Schweingruber FH, Baillie MGL, Shiyatov SG, Vaganov EA (1999) European tree rings and climate in the 16th century. Clim Change 43:151–168CrossRefGoogle Scholar
  8. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern hemisphere: part 1, local and regional climate signals. Holocene 12(6):737–757CrossRefGoogle Scholar
  9. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880CrossRefGoogle Scholar
  10. Craig H, Gordon LL (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Proceedings of a conference on stable isotopes in oceanographic studies and palaeotemperatures, Spoleto, Italy, pp 9–130Google Scholar
  11. Danis PA, Masson-Delmotte V, Stievenard M, Guillemin MT, Daux V, Naveau P, von Grafenstein U (2006) Reconstruction of past precipitation \(\updelta ^{18}\)O using tree-ring cellulose δ 18O and δ 13C: a calibration study near Lac d’Annecy, France. Earth Planet Sci Lett 243:439–448CrossRefGoogle Scholar
  12. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  13. Dongmann G, Nürnberg HW (1974) On the enrichment of H\(_{2}^{18}\)O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52CrossRefGoogle Scholar
  14. Edwards TWD, Fritz P (1986) Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: paleoclimatic implications for southern Ontario, Canada. Appl Geochem 1:715–723CrossRefGoogle Scholar
  15. Etien N, Daux V, Masson-Delmotte V, Stievenard M, Bernard V, Durost S, Guillemin MT, Mestre O, Pierre M (2008) A bi-proxy reconstruction of Fontainebleau (France) growing season temperature from A.D. 1596 to 2000. Clim Past 4:1–16CrossRefGoogle Scholar
  16. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–37CrossRefGoogle Scholar
  17. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  18. Feng X, Epstein S (1995) Climatic temperature records in δD data from tree rings. Geochim Cosmochim Acta 59(14):3029–3037CrossRefGoogle Scholar
  19. Fritts HC (1976) Tree rings and climate. Academic, LondonGoogle Scholar
  20. Geihofer D, Grabner M, Gelhart J, Wimmer R, Fuchsberger H (2005) New master chronologies from historical and archaeological timber in Eastern Austria. In: Sarlatto M, Di Filippo A, Piovesan G (eds) Eurodendro 2005—international conference of dendrochronology, Viterbo, Italy, pp 50–51Google Scholar
  21. Glaser R (2001) Klimageschichte Mitteleuropas. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  22. Knöller K, Boettger T, Weise SM, Gehre M (2005) Carbon isotope analyses of cellulose using two different on-line techniques (elemental analysis and high-temperature pyrolysis)—a comparison. Rapid Commun Mass Spectrom 19:343–348CrossRefGoogle Scholar
  23. Knöller K, Boettger T, Haupt M, Weise SM (2007) Routine hydrogen isotope measurement of cellulose nitrate by high-temperature pyrolysis—reference materials and precision. Rapid Commun Mass Spectrom 21:3085–3092CrossRefGoogle Scholar
  24. Leuenberger M (2007) To what extent can ice core data contribute to the understanding of plant ecological developments of the past? In: Dawson T, Siegwolf R (eds) Isotopes as indicators of ecological change. Elsevier, Amsterdam, pp 211–233CrossRefGoogle Scholar
  25. Liebert S (1996) Eichenchronologien im Raum Wien, 1462–1995. Dissertation, University of Natural Resources and Applied Life Sciences, Vienna, AustriaGoogle Scholar
  26. Masson-Delmotte V, Raffalli-Delerce G, Danis PA, Yiou P, Stievenard M, Guibal F, Mestre O, Bernard V, Goosse H, Hoffmann G, Jouzel J (2005) Changes in European precipitation seasonality and in drought frequencies revealed by a four-century-long tree-ring isotopic record from Brittany, western France. Clim Dyn 24:57–69CrossRefGoogle Scholar
  27. McCarroll D, Loader N (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  28. Monserud RA, Marshall JD (2001) Time-series analysis of δ 13C from tree rings. I. Time trends and autocorrelation. Tree Physiol 21:1087–1102Google Scholar
  29. Pendall E (2000) Influence of precipitation seasonality on pinon pine cellulose δD values. Glob Chang Biol 6:287–301CrossRefGoogle Scholar
  30. Raffalli-Delerce G, Masson-Delmotte V, Dupouey JL, Stievenard M, Breda N, Moisselin JM (2004) Reconstruction of summer droughts using tree-ring cellulose isotopes: a calibration study with living oaks from Brittany (western France). Tellus 56B:160–174Google Scholar
  31. Rebetez M, Saurer M, Cherubini P (2003) To what extent can oxygen isotopes in tree rings and precipitation be used to reconstruct past atmospheric temperature? A case study. Clim Change 61:237–248CrossRefGoogle Scholar
  32. Reynolds-Henne CE, Siegwolf RTW, Treydte KS, Esper J, Henne S, Saurer M (2007) Temporal stability of climate–isotope relationships in tree rings of oak and pine (Ticino, Switzerland). Glob Biogeochem Cycles. doi: 10.1029/2007GB002945 Google Scholar
  33. Robertson I, Waterhouse JS, Barker AC, Carter AHC, Switsur VR (2001) Oxygen isotope ratios of oak in east England: implications for reconstructing the isotopic composition of precipitation. Earth Planet Sci Lett 191:21–31CrossRefGoogle Scholar
  34. Roden JS, Guanghui L, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64(1):21–35CrossRefGoogle Scholar
  35. Rozanski K, Araguas-Araguas L, Confinianti R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J et al (eds) Climate change in continental isotopic records, geophysical monograph 78. American Geophysical Union, Washington, pp 1–36Google Scholar
  36. Saurer M, Aellen K, Siegwolf R (1997) Correlating δ 13C and δ 18O in cellulose of trees. Plant Cell Environ 20:1543–1550CrossRefGoogle Scholar
  37. Schleser GH, Bernhardt KG, Hurka H (1989) Climatic adaptability of populations of Diplotaxis erucoides D.C. (Brassicaceae) from Sisily, based on leaf morphology, leaf anatomy and δ 13C studies. Int J Biometeorol 33:109–118CrossRefGoogle Scholar
  38. Schleser GH, Helle G, Lücke A, Vos H (1999) Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quat Sci Rev 18:927–943CrossRefGoogle Scholar
  39. Schweingruber FH, Bartholin T, Schaur E, Briffa KR (1988) Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17:559–566CrossRefGoogle Scholar
  40. Serre-Bachet F (1994) Middle ages temperature reconstructions in Europe, a focus on northeastern Italy. Clim Change 26:213–224CrossRefGoogle Scholar
  41. Shu Y, Feng X, Gazis C, Anderson D, Faiia AM, Tang K, Ettl GJ (2005) Relative humidity recorded in tree rings: a study along a precipitation gradient in the Olympic Mountains, Washington, USA. Geochim Cosmochim Acta 69:791–799CrossRefGoogle Scholar
  42. Siegenthaler U, Oeschger H (1980) Correlation of 18O in precipitation with temperature and altitude. Nature 285:314–317CrossRefGoogle Scholar
  43. Strumia G (1999) Tree-ring based reconstruction of precipitation in Eastern Austria. Dissertation, University of Natural Resources and Applied Live Sciences, Vienna, AustriaGoogle Scholar
  44. Tang K, Feng X, Ettl GJ (2000) The variations in δD of tree rings and the implications for climatic reconstruction. Geochim Cosmochim Acta 64(19):1663–1673CrossRefGoogle Scholar
  45. Treydte K, Frank D, Esper J, Andreu L, Bednarz Z, Berninger F, Boettger T, D’Allessandro CM, Etien N, Filot M, Grabner M, Guillemin MT, Gutierrez E, Haupt M, Helle G, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Saurer M, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M, Schleser GH (2007) Signal strength and climate calibration of a European tree ring isotope network. Geophys Res Lett 34:L24302CrossRefGoogle Scholar
  46. van der Schrier G, Efthymiadis D, Briffa KR, Jones PD (2007) European Alpine moisture variability for 1900–2003. Int J Climatol 27:415–427CrossRefGoogle Scholar
  47. Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Robertson I (2002) Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth Planet Sci Lett 201:421–430CrossRefGoogle Scholar
  48. Weigl M (2006) Annual and intra-annual variations of ring-widths and stable isotopes in sessile oak (Quercus petraea Matt. Liebl.). Diploma thesis, University of Natural Resources and Applied Live Sciences, Vienna, AustriaGoogle Scholar
  49. Weigl M, Grabner M, Helle G, Schleser GH, Wimmer R (2007) Variability of latewood-widths and -stable isotope ratios in a sessile oak tree (Quercus petraea Matt. Liebl.). Dendrochronologia 24:117–122CrossRefGoogle Scholar
  50. Weigl M, Grabner M, Helle G, Schleser GH, Wimmer R (2008a) Characteristics of radial growth and stable isotopes in a single oak tree to be used in climate studies. Sci Total Environ 393:154–161CrossRefGoogle Scholar
  51. Weigl M, Geihofer D, Grabner M (2008b) Climate–growth relationships of intra-annual parameters for oak from Austria. In: Grabner M, Eckstein D (eds) EuroDendro 2008, 28th May–1st June 2008, Hallstatt, Austria, p 67Google Scholar
  52. White JWC, Lawrence JR, Broecker WS (1994) Modeling and interpreting D/H ratios in tree rings: a test case of white pine in the northeastern United States. Geochim Cosmochim Acta 58(2):851–862CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Marika Haupt
    • 1
    Email author
  • Martin Weigl
    • 2
    • 3
  • Michael Grabner
    • 2
  • Tatjana Boettger
    • 1
  1. 1.Department of Isotope HydrologyHelmholtz Centre for Environmental Research—UFZHalleGermany
  2. 2.Department of Material Sciences and Process EngineeringUniversity of Natural Resources and Applied Life Sciences, ViennaViennaAustria
  3. 3.Competence Center for Wood GmbH (Wood K plus)LinzAustria

Personalised recommendations