Climatic Change

, Volume 100, Issue 1, pp 195–202 | Cite as

The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS)

  • Christian AzarEmail author
  • Kristian Lindgren
  • Michael Obersteiner
  • Keywan Riahi
  • Detlef P. van Vuuren
  • K. Michel G. J. den Elzen
  • Kenneth Möllersten
  • Eric D. Larson


The United Nations Framework Convention on Climate Change (UNFCCC 1992) calls for stabilization of atmospheric greenhouse gas (GHG) concentrations at a level that would prevent dangerous anthropogenic interference with the climate system. We use three global energy system models to investigate the technological and economic attainability of meeting CO2 concentration targets below current levels. Our scenario studies reveal that while energy portfolios from a broad range of energy technologies are needed to attain low concentrations, negative emission technologies—e.g., biomass energy with carbon capture and storage (BECCS)—significantly enhances the possibility to meet low concentration targets (at around 350 ppm CO2).


Concentration Target Dangerous Anthropogenic Interference Primary Energy Carrier Negative Emission Technology Major Economy Forum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azar C, Rodhe H (1997) Targets for stabilization of atmospheric CO2. Science 276:1818–1819CrossRefGoogle Scholar
  2. Azar C, Schneider SH (2002) Are the economic costs of stabilizing the atmosphere prohibitive? Ecol Econ 42:73–80CrossRefGoogle Scholar
  3. Azar C, Lindgren K, Andersson B (2003) Global energy scenarios meeting stringent CO2 constraints—cost effective fuel choices in the transportation sector. Energy Policy 31:961–976CrossRefGoogle Scholar
  4. Azar C, Lindgren K, Larson E, Möllersten K (2006) Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim Change 74:47–79CrossRefGoogle Scholar
  5. Berndes G, Hoogwijk M, Van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28CrossRefGoogle Scholar
  6. Bouwman AF, Kram T, Klein Goldewijk K (2006) Integrated modelling of global environmental change. Netherlands Environmental Assessment Agency (MNP), Bilthoven, October 2006. Available at
  7. De Vries HJM, Van Vuuren DP, Den Elzen MGJ, Janssen MA (2002) The targets image energy model regional (TIMER)—Technical documentation. National Institute of Public Health and the Environment (RIVM), Bilthoven, the NetherlandsGoogle Scholar
  8. European Council (2005) Presidency conclusion; 7619/1/05, REV 1, 22nd–23rd March 2005;
  9. Fisher B, Nakicenovic N, Alfsen K, Corfee Morlot J, de la Chesnaye F, Hourcade J-C, Jiang K, Kainuma M, La Rovere E, Matysek A, Rana A, Riahi K, Richels R, Rose S, Van Vuuren D, Warren R, Ambrosi P, Birol F, Bouille D, Clapp C, Eickhout B, Hanaoka T, Mastrandrea MD, Matsuoko Y, O’Neill B, Pitcher H, Rao S, Toth F (2007) Issues related to mitigation in the long-term context. In: Metz B, Davidson O, Bosch P, Dave R, Meyer L (eds) Climate change 2007. Mitigation of climate change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 169–250Google Scholar
  10. Graßl H, Kokott J, Kulessa M, Luther J, Nuscheler F, Sauerborn R, Schellnhuber H-J, Schubert R, Schulze E-D (2003) Climate protection strategies for the 21st century: Kyoto and beyond. Report prepared by the German Advisory Council on Global Change (WBGU), Berlin, GermanyGoogle Scholar
  11. Hansen JE (2005) A slippery slope: how much global warming constitutes dangerous anthropogenic interference. Clim Change 68:269–279CrossRefGoogle Scholar
  12. Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298:981–987CrossRefGoogle Scholar
  13. IPCC (2005) Special report on CO2 capture and storage. Cambridge University Press, CambridgeGoogle Scholar
  14. Keith D (2009) Why capture CO2 from the atmosphere. Science 325:1654–1655CrossRefGoogle Scholar
  15. Knopf B, Edenhofer O, Barker T, Baumstark L, Criqui P, Held A, Isaac M, Jakob M, Jochem E, Kitous A, Kypreos S, Leimbach M, Magné B, Mima S, Schade W, Scrieciu S, Turton H, van Vuuren DP (2009) The economics of low stabilisation: implications for technological change and policy. In: Hulme M, Neufeld H (eds) Making climate work for usGoogle Scholar
  16. Leemans R, van Amstel A, Battjes C, Kreileman E, Toet S (1996) The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source. Glob Environ Change 6(4):335–357CrossRefGoogle Scholar
  17. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci U S A 105:1786–1793CrossRefGoogle Scholar
  18. MEF (2009) Declaration on energy and climate. Major Economies Forum, L’Aquila, ItalyGoogle Scholar
  19. Meinshausen M, Hare B, Wigley TML, van Vuuren DP, den Elzen MGJ, Swart R (2006) Multi-gas emission pathways to meet arbitrary climate targets. Clim Change 75:151–194CrossRefGoogle Scholar
  20. Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge, ISBN 0521804930, pp 612Google Scholar
  21. O’Neill BC, Oppenheimer M (2004) Climate change impacts are sensitive to the concentration stabilization path. PNAS 101:16411–16416CrossRefGoogle Scholar
  22. Obersteiner M, Azar Ch, Kauppi P, Möllersten K, Moreira J, Nilsson S, Read P, Riahi K, Schlamadinger B, Yamagata Y, Yan J, van Ypersele J-P (2001) Managing climate risk. Science 294(5543):786–787CrossRefGoogle Scholar
  23. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972CrossRefGoogle Scholar
  24. Persson UM, Azar C (2010) Preserving the world’s tropical forests: a price on carbon may not do. Environ Sci Technol 44:210–215CrossRefGoogle Scholar
  25. Rao S, Riahi K (2006) The role of non-CO2 greenhouse gases in climate change mitigation: long-term scenarios for the 21st century. Energy J 27:177–200Google Scholar
  26. Riahi K, Grubler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74:887–935CrossRefGoogle Scholar
  27. Rockström J, Steffen W, Noone K, Persson Ã, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, De Wit CA, Hughes T, Van Der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475CrossRefGoogle Scholar
  28. Sandén B, Azar C (2005) Near term technology policies for long term climate targets. Energy Policy 33:1557–1576CrossRefGoogle Scholar
  29. Schrattenholzer L, Miketa A, Riahi K, Roehrl RA, Strubegger M (2004) Achieving a sustainable global energy system. Edward Elgar Publishing, CheltenhamGoogle Scholar
  30. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Tun-Hsiang Y (2008) Use ofU.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240CrossRefGoogle Scholar
  31. Tilman D et al (2009) Beneficial biofuels—the food energy environment trilemma. Science 325:270–271CrossRefGoogle Scholar
  32. UNFCCC (1992) United Nations framework convention on climate change.
  33. van Vuuren DP, Den Elzen MGJ, Lucas P, Eickhout BE, Strengers BJ, Van Ruijven B, Wonink S, Van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159CrossRefGoogle Scholar
  34. van Vuuren DP, van Vliet J, Stehfest E (2009) Future bio-energy potential under various natural constraints. Energy Policy 37:4220–4230CrossRefGoogle Scholar
  35. Wigley TML, Richels R, Edmonds J (1996) Economics and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379:240–243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Christian Azar
    • 1
    Email author
  • Kristian Lindgren
    • 1
  • Michael Obersteiner
    • 2
  • Keywan Riahi
    • 2
  • Detlef P. van Vuuren
    • 3
  • K. Michel G. J. den Elzen
    • 3
  • Kenneth Möllersten
    • 2
  • Eric D. Larson
    • 4
    • 5
  1. 1.Department of Physical Resource TheoryChalmers University of TechnologyGöteborgSweden
  2. 2.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  3. 3.Netherlands Environmental Assessment AgencyAH BilthovenThe Netherlands
  4. 4.Princeton Environmental InstitutePrinceton UniversityPrincetonUSA
  5. 5.Climate Central, Inc.PrincetonUSA

Personalised recommendations