Climatic Change

, Volume 101, Issue 1–2, pp 235–256 | Cite as

The variability of European floods since AD 1500

  • Rüdiger Glaser
  • Dirk Riemann
  • Johannes Schönbein
  • Mariano Barriendos
  • Rudolf Brázdil
  • Chiara Bertolin
  • Dario Camuffo
  • Mathias Deutsch
  • Petr Dobrovolný
  • Aryan van Engelen
  • Silvia Enzi
  • Monika Halíčková
  • Sebastian J. Koenig
  • Oldřich Kotyza
  • Danuta Limanówka
  • Jarmila Macková
  • Mirca Sghedoni
  • Brice Martin
  • Iso Himmelsbach
Article

Abstract

The paper presents a qualitative and quantitative analysis of flood variability and forcing of major European rivers since AD 1500. We compile and investigate flood reconstructions which are based on documentary evidence for twelve Central European rivers and for eight Mediterranean rivers. Flood variability and underlying climatological causes are reconstructed by using hermeneutic approaches including critical source analysis and by applying a semi-quantitative classification scheme. The paper describes the driving climatic causes, seasonality and variability of observed flood events within the different river catchments covering the European mainland. Historical flood data are presented and recent research in the field of historical flood reconstructions is highlighted. Additionally, the character of the different flood series is discussed. A comparison of the historical flood seasonality in relation to modern distribution is given and aspects of the spatial coherence are presented. The comparative analysis points to the fact that the number of flood events is predominately triggered by regional climatic forcing, with at most only minor influence on neighbouring catchments. The only exceptions are extreme, supra-regional climatic events and conditions such as anomalous cold winters, similar to that of 1784, which affected large parts of Europe and triggered flood events in several catchments as a result of ice-break at the beginning of the annual thaw. Four periods of increased occurrence of flooding, mostly affecting Central European Rivers, have been identified; 1540–1600, 1640–1700, 1730–1790, 1790–1840. The reconstruction, compilation and analysis of European-wide flood data over the last five centuries reveal the complexity of the underlying climatological causes and the high variability of flood events in temporal and spatial dimension.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandre P (1987) Le climat en Europe au Moyen Age, contribution à l’histoire des variations climatiques de 1000 à 1425, d’après les sources narratives de l’Europe occidental. Editions de l’ Ecole des hautes études en sciences sociales, ParisGoogle Scholar
  2. Bárdossy A, Caspary HJ (1990) Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theor Appl Climatol 42:155–167CrossRefGoogle Scholar
  3. Barredo J, de Roo A, Lavalle C (2007) Flood risk mapping at European scale. Water Sci Technol 56:11–17Google Scholar
  4. Barriendos M, Llasat MC (2003) The case of the “Maldá” Anomaly in the Western Mediterranean Basin (AD 1760–1800): an example of a strong climatic variability. Clim Change 61:191–216CrossRefGoogle Scholar
  5. Barriendos M, Rodrigo FS (2006) Study of historical flood events of Spanish rivers using documentary data. Hydrol Sci J 51:765–783CrossRefGoogle Scholar
  6. Baur F (1947) Musterbeispiele europäischer Grosswetterlagen. Dieterich’sche Verlagsbuchhandlung, WiesbadenGoogle Scholar
  7. Benito G (2003) Palaeoflood hydrology in Europe. In: Thorndycraft VR, Benito G, Barriendos M, Llasat MC (eds) Palaeofloods, historical data and climatic variability: applications in flood risk assessment. Centro de Ciencias Medioambientales, Madrid, pp 19–24Google Scholar
  8. Benito G, Thorndycraft VR (2004) Systematic, palaeoflood and historical data for the improvement of flood risk estimation: a methodological guide. CSIC, MadridGoogle Scholar
  9. Benito G, Díez–Herrero A, Villalta F (2003) Magnitude and frequency of flooding in the Tagus Basin (Central Spain) over the last millennium. Clim Change 58:171-192CrossRefGoogle Scholar
  10. Benito G, Díez-Herrero A, Fernández de Villalta M, Villalba R (2004a) Flood response to solar activity in the Tagus Basin (Central Spain) over the last millennium. Clim Change 66:27–28CrossRefGoogle Scholar
  11. Benito G, Lang M, Barriendos M, Llasat MC, Francés F, Ouarda T, Thorndycraft VR, Enzel Y, Bardossy A, Coeur D, Bobée B (2004b) Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods. Nat Hazards 31:623–643CrossRefGoogle Scholar
  12. Böhm O, Wetzel KF (2006) Flood history of the Danube tributaries Lech and Isar in the Alpine foreland of Germany. Hydrol Sci J 51:784–798CrossRefGoogle Scholar
  13. Brázdil R, Glaser R, Pfister C, Dobrovolný P, Antoine J-M, Barriendos M, Camuffo D, Deutsch M, Enzi S, Guidoboni E, Kotyza O, Rodrigo FS (1999) Flood events of selected European rivers in the sixteenth century. Clim Change 43:239–285CrossRefGoogle Scholar
  14. Brázdil R, Glaser R, Pfister C, Stangl H (2002) Floods in Europe. A look into the past. PAGES News 10:21–23Google Scholar
  15. Brázdil R, Dobrovolný P, Elleder L, Kakos V, Kotyza O, Květoň V, Macková J, Müller M, Štekl J, Tolasz R, Valášek H (2005) Historické a současné povodně v České republice (Historical and recent floods in the Czech Republic). Masarykova univerzita, Český hydrometeorologický ústav, Brno PrahaGoogle Scholar
  16. Brázdil R, Kundzewicz ZW, Benito G (2006) Historical hydrology for studying flood risk in Europe. Hydrol Sci J 51:733–738CrossRefGoogle Scholar
  17. Brázdil R, Demarée G, Deutsch M, Garnier E, Kiss A, Luterbacher J, Macdonald N, Rohr C, Dobrovolný P, Kolář P, Chromá K (2010) European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’. Theor Appl Climatol 100(1–2):163–189CrossRefGoogle Scholar
  18. Buisman J, van Engelen AFV (1994) Historical high waters Meuse river Ad 858–1880. KNMI report for the Commission Boertien II, KNMIGoogle Scholar
  19. Bürger K, Dostal P, Seidel J, Imbery F, Barriendos M, Mayer H, Glaser R (2006) Hydrometeorological reconstruction of the 1824 flood event in the Neckar River basin (southwest Germany). Hydrol Sci J 51:864–877CrossRefGoogle Scholar
  20. Camuffo D (1995) Acid clouds of volcanic aerosols and river flooding: some comments on natural disasters and their mathematical analysis. In: Horlick J, Amendola A, Casale R (eds) Natural risk and civil protection. E&FN Spon, Andover, pp 137–144Google Scholar
  21. Camuffo D, Enzi S (1994) The climate of Italy from 1675 to 1715. In: Frenzel B, Pfister C, Gläser B (eds) Climatic trends and anomalies in Europe 1675–1715. Gustav Fischer, Stuttgart, pp 243–254Google Scholar
  22. Camuffo D, Enzi S (1995) Climatic features during the Spörer and Maunder Minima. In: Frenzel B, Galli M, Nanni T, Gläser B (eds) Solar output and climate during the Holocene. Gustav Fischer, Stuttgart, pp 105–125Google Scholar
  23. Camuffo D, Enzi S (1996) The analysis of two bi-millenary series: Tiber and Po River floods. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic variations and forcing mechanisms of the last 2000 years. Springer, Berlin, pp 433–450Google Scholar
  24. Camuffo D, Sturaro G, Benito G (2003) An opposite flood pattern teleconnection between the Tagus (Iberian Peninsula) and Tiber (Italy) rivers during the last 1000 years. In: Thorndycraft VR, Benito G, Barriendos M, Llasat MC (eds) Palaeofloods and climatic variability: applications in flood risk management. CSIC-CCM, Madrid, pp 295–300Google Scholar
  25. Demarée GR (2006) The catastrophic floods of February 1784 in and around Belgium—a Little Ice Age event of frost, snow, river ice ... and floods. Hydrol Sci J 51:878–898CrossRefGoogle Scholar
  26. Deutsch M (2007) Untersuchungen zu Hochwasserschutzmaßnahmen an der Unstrut (1500–1900). Göttinger Geographische Abhandlungen 117, GöttingenGoogle Scholar
  27. Deutsch M, Glaser R, Pörtge KH, Börngen M, Drescher A, Martin B, Riemann D, Schönbein J (2009) Historische Hochwasserereignisse in Mitteleuropa. Geogr Rdsch 3 (accepted)Google Scholar
  28. Díez-Herrero A, Benito G, Laín-Huerta L (1998) Regional palaeoflood databases applied to flood hazards and palaeoclimate analysis. In: Benito G, Baker VR, Gregory KJ (eds) Palaeohydrology and environmental change. Wiley, Chichester, pp 335–347Google Scholar
  29. Fernández de Villalta M, Benito G, Díez-Herrero A (2001) Historical flood data analysis using a GIS: the palaeotagus database. In: Glade T, Albini P, Francés F (eds) The use of historical data in natural hazard assessments. Advances in Natural and Technological Hazard Research, Dordrecht, pp 101–112Google Scholar
  30. Gerlach R (1990) Flußdynamik des Mains unter dem Einfluß des Menschen seit dem Spätmittelalter. Forschungen zur deutschen Landeskunde 234, TrierGoogle Scholar
  31. Glaser R (1991) Klimarekonstruktion für Mainfranken, Bauland und Odenwald anhand direkter und indirekter Witterungsdaten seit 1500. Gustav Fischer, StuttgartGoogle Scholar
  32. Glaser R (1996) Data and methods of climatological evaluation. Historical Climatology 21:56–88Google Scholar
  33. Glaser R (2001) Klimageschichte Mitteleuropas: 1000 Jahre Wetter, Klima, Katastrophen. Primus, DarmstadtGoogle Scholar
  34. Glaser R (2008) Klimageschichte Mitteleuropas: 1200 Jahre Wetter, Klima, Katastrophen. Primus, DarmstadtGoogle Scholar
  35. Glaser R, Hagedorn H (1990) Die Überschwemmungskatastrophe von 1784 im Maintal. Eine Chronologie ihrer witterungsklimatischen Voraussetzungen und Auswirkungen. Die Erde 121:1–14Google Scholar
  36. Glaser R, Stangl H (2003) Historical floods in the Dutch Rhine Delta. Nat Hazards Earth Syst Sci 3:605–613CrossRefGoogle Scholar
  37. Helbling A, Kann C, Vogt S (2006) Dauerregen, Schauer oder Schmelze—welche Ereignisse lösen in der Schweiz die Jahreshochwasser aus? Wasser Energ Luft 98:249–254Google Scholar
  38. Hesselink AW (2002) History makes a river: morphological changes and human interference in the river Rhine, The Netherlands. Nederlandse geografische studies 292, UtrechtGoogle Scholar
  39. Heylen J (1995) Verslag Hoge Waterstanden Grensmaas Dec 93–Jan–Feb 95 gerelateerd aan vroegere waterstanden. Ministerie van de Vlaamse Gemeenschap, Dienst Hydrologisch Onderzoek (DIHO)Google Scholar
  40. Jacobeit J, Glaser R, Luterbacher J, Nonnenmacher M, Wanner H (2003) Links between flood events in Central Europe since AD 1500 and the large-scale atmospheric circulation. Geophys Res Lett 30:1172CrossRefGoogle Scholar
  41. Jacobeit J, Nonnenmacher M, Philipp A (2006) Atmospheric circulation dynamics linked with prominent discharge events in Central Europe. Hydrol Sci J 51:946–965CrossRefGoogle Scholar
  42. Koenig SJ (2007) Potential of documentary based climate information for the evaluation of European temperature extremes and large scale SLP reconstructions. University of Bern, BernGoogle Scholar
  43. Köppen W (1931) Grundriss der Klimakunde. Walter de Gruyter, BerlinGoogle Scholar
  44. Kundzewicz ZW, Robson AJ (2004) Change detection in river flow records—review of methodology. Hydrol Sci J 49:7–19CrossRefGoogle Scholar
  45. Kundzewicz ZW, Graczyk D, Maurer T, Pinskwar I, Radziejewski M, Svensson C, Szwed M (2005) Trend detection in river flow series: 1. Annual maximum flow. Hydrol Sci J 50:797–810CrossRefGoogle Scholar
  46. Lindström G, Bergström S (2004) Runoff trends in Sweden 1807–2002. Hydrol Sci J 49:69–83CrossRefGoogle Scholar
  47. Luterbacher J, Koenig SJ, Franke J, van der Schrier G, Zorita E, Moberg A, Jacobeit J, Della-Marta PM, Küttel M, Xoplaki E, Wheeler D, Rutishauser T, Stössel M, Wanner H, Brázdil R, Dobrovolný P, Camuffo D, Bertolin C, van Engelen A, Gonzalez-Rouco FJ, Wilson R, Pfister C, Limanówka D, Nordli Ø, Leijonhufvud L, Söderberg J, Allan R, Barriendos M, Glaser R, Riemann D, Hao Z, Zerefos CS (2010) Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models. Clim Change doi:10.1007/s10584-009-9782-0 Google Scholar
  48. Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) No upward trends in the occurrence of extreme floods in Central Europe. Nature 425:166–169CrossRefGoogle Scholar
  49. Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2004) Extreme floods in Central Europe over the past 500 years: role of cyclone pathway “Zugstrasse Vb”. J Geophys Res 109:D23101CrossRefGoogle Scholar
  50. Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen (1496–1995). Paul Haupt, BernGoogle Scholar
  51. Pfister C, Brázdil R, Glaser R (eds) (1999) Climatic variability in sixteenth century Europe and its social dimension. Kluwer, DordrechtGoogle Scholar
  52. Pohl R (2004a) Historische Hochwasser aus dem Erzgebirge. Dresdner Wasserbauliche Mitteilung 28/2004, DresdenGoogle Scholar
  53. Pohl R (2004b) Das Sommerhochwasser 2002 in Dresden und Umgebung. Erfurt Geogr Stud 11:121–128Google Scholar
  54. Radziejewski M, Kundzewicz ZW (2004) Detectability of changes in hydrological records. Hydrol Sci J 49:39–51CrossRefGoogle Scholar
  55. Spreafico M, Aschwanden H (1991) Hochwasserabflüsse in schweizerischen Gewässern. Abflussmessreihen aus den Messnetzen der Landshydrologie und -geologie, der Kantone, der Hochschulen und privaten Institutionen in den Einzugsgebieten des Rheins und der Aare. Hydrologische Mitteilungen 3, BernGoogle Scholar
  56. Sturm K, Glaser R, Jacobeit J, Deutsch M, Brázdil R, Pfister C (2001) Hochwasser in Mitteleuropa seit 1500 und ihre Beziehung zur atmosphärischen Zirkulation. Petermanns Geogr Mitt 145:18–27Google Scholar
  57. Sudhaus D, Seidel J, Bürger K, Dostal P, Imbery F, Mayer H, Glaser R, Konold W (2008) Discharges of past flood events based on historical river profiles. Hydrol Earth Syst Sci Discuss 5:323–344CrossRefGoogle Scholar
  58. Svensson C, Kundzewicz ZW, Maurer T (2005) Trend detection in river flow series: 2. Flood and low-flood index series. Hydrol Sci J 50:811–824CrossRefGoogle Scholar
  59. Thorndycraft VR, Benito G, Barriendos M, Llasat MC (2003) Palaeofloods, historical data and climatic variability: applications in flood risk assessment. CSIC, MadridGoogle Scholar
  60. Thorndycraft VR, Benito G, Rico M, Sánchez-Moya Y, Sopeña A, Casas A (2005) A long-term flood discharge record derived from slackwater flood deposits of the Llobregat River, NE Spain. J Hydrol 313:16–31CrossRefGoogle Scholar
  61. Ulbrich U, Fink A (1995) The January 1995 flood in Germany: meteorological versus hydrological causes. Phys Chem Earth 20:439–444CrossRefGoogle Scholar
  62. Ulbrich U, Brücher T, Fink A, Leckebusch G, Krüber A, Pinto JG (2003a) The Central European floods in August 2002. Part I: rainfall periods and flood development. Weather 58:371–377CrossRefGoogle Scholar
  63. Ulbrich U, Brücher T, Fink A, Leckebusch G, Krüber A, Pinto JG (2003b) The Central European floods in August 2002. Part 2: synoptic causes and considerations with respect to climate change. Weather 58:434–442CrossRefGoogle Scholar
  64. Vaquero JM (2004) Solar signal in the number of floods recorded for the Tagus River Basin over the last millennium. Clim Change 66:23–26CrossRefGoogle Scholar
  65. Weingartner R, Spreafico M (1992) Hydrological atlas of Switzerland. Bundesamt für Wasser und Geologie, BernGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Rüdiger Glaser
    • 1
  • Dirk Riemann
    • 1
  • Johannes Schönbein
    • 1
  • Mariano Barriendos
    • 2
  • Rudolf Brázdil
    • 3
  • Chiara Bertolin
    • 4
  • Dario Camuffo
    • 4
  • Mathias Deutsch
    • 5
  • Petr Dobrovolný
    • 3
  • Aryan van Engelen
    • 6
  • Silvia Enzi
    • 7
  • Monika Halíčková
    • 3
  • Sebastian J. Koenig
    • 8
  • Oldřich Kotyza
    • 9
  • Danuta Limanówka
    • 10
  • Jarmila Macková
    • 3
  • Mirca Sghedoni
    • 7
  • Brice Martin
    • 11
  • Iso Himmelsbach
    • 11
  1. 1.IPG, Institute for Physical GeographyUniversity of FreiburgFreiburgGermany
  2. 2.Department of Modern HistoryUniversity of BarcelonaBarcelonaSpain
  3. 3.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  4. 4.National Research Council of ItalyInstitute of Atmospheric Sciences and ClimatePaduaItaly
  5. 5.Saechsische Akademie der Wissenschaften zu LeipzigLeipzigGermany
  6. 6.KNMI, Koninklijk Nederlands Meteorologisch InstituutDe BiltNetherlands
  7. 7.KleiòPaduaItaly
  8. 8.Department of GeosciencesUniversity of MassachusettsAmherstUSA
  9. 9.Regional MuseumLitoměřiceCzech Republic
  10. 10.Department of MeteorologyInstitute of Meteorology and Water ManagementCracowPoland
  11. 11.CRESAT-Université de Haute-AlsaceMulhouseFrance

Personalised recommendations