Climatic Change

, Volume 107, Issue 3–4, pp 593–613 | Cite as

Extensive glaciers in northwest North America during Medieval time

Article

Abstract

The Medieval Warm Period is an interval of purportedly warm climate during the early part of the past millennium. The duration, areal extent, and even existence of the Medieval Warm Period have been debated; in some areas the climate of this interval appears to have been affected more by changes in precipitation than in temperature. Here, we provide new evidence showing that several glaciers in western North America advanced during Medieval time and that some glaciers achieved extents similar to those at the peak of the Little Ice Age, many hundred years later. The advances cannot be reconciled with a climate similar to that of the twentieth century, which has been argued to be an analog, and likely were the result of increased winter precipitation due to prolonged La Niña-like conditions that, in turn, may be linked to elevated solar activity. Changes in solar output may initiate a response in the tropical Pacific that directly impacts the El Niño/Southern Oscillation and associated North Pacific teleconnections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with NCAR climate system model. Proc Natl Acad Sci USA 104:3713–3718CrossRefGoogle Scholar
  2. Bakke J, Lie Ø, Nesje A, Dahl SO, Paasche Ø (2005) Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructions during the Holocene, northern Folgefonna, western Norway. Holocene 15:161–176CrossRefGoogle Scholar
  3. Barclay DJ, Wiles GC, Calkin PE (1999) 1119-year tree-ring-width chronology from western Prince William Sound, southern Alaska. Holocene 9:79–84CrossRefGoogle Scholar
  4. Barclay DJ, Calkin PE, Wiles GC (2001) Holocene history of Hubbard Glacier in Yakutat Bay and Russell Fiord, southern Alaska. Geol Soc Am Bull 113:388–402CrossRefGoogle Scholar
  5. Barclay DJ, Barclay JL, Calkin PE, Wiles GC (2006) A revised and extended Holocene glacial history of Icy Bay, southern Alaska, U.S.A. Arct Antarct Alp Res 38:153–162CrossRefGoogle Scholar
  6. Barclay DJ, Wiles GC, Calkin PE (2009) Holocene glacier fluctuations in Alaska. Quat Sci Rev 28:2034–2048CrossRefGoogle Scholar
  7. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B:985–992Google Scholar
  8. Binford MW, Kolata AL, Brenner M, Janusek JW, Seddon MT, Abbott M, Curtis JH (1997) Climate variation and the rise and fall of an Andean civilization. Quat Res 47:235–248CrossRefGoogle Scholar
  9. Bitz CM, Battisti DS (1999) Interannual to decadal variability in climate and the glacier mass balance in Washington, western Canada, and Alaska. J Clim 12:3187–3196CrossRefGoogle Scholar
  10. Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffman S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136CrossRefGoogle Scholar
  11. Bradley RS, Jones PD (1993) ‘Little Ice Age’ summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3:367–376CrossRefGoogle Scholar
  12. Bradley RS, Hughes MK, Diaz HF (2003) Climate in Medieval time. Science 302:404–405CrossRefGoogle Scholar
  13. Broecker WS (2001) Was the Medieval Warm Period global? Science 291:1497–1499CrossRefGoogle Scholar
  14. Castillo LJ, Uceda S (2008) The Mochicas. In: Silverman H, Isbell WH (eds) Handbook of South American archaeology. Springer, New York, pp 707–729Google Scholar
  15. Clague JJ, Menounos B, Osborn G, Luckman BH, Koch J (2009) Nomenclature and resolution in holocene glacial chronologies. Quat Sci Rev 28:2231–2238CrossRefGoogle Scholar
  16. Clague JJ, Koch J, Geertsema M (2010) Expansion of outlet glaciers of the Juneau Icefield in northwest British Columbia during the past two millennia. Holocene 20:447–461CrossRefGoogle Scholar
  17. Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Nino/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276CrossRefGoogle Scholar
  18. Cook ER, Esper J, D’Arrigo RD (2004a) Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years. Quat Sci Rev 23:2063–2074CrossRefGoogle Scholar
  19. Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004b) Long-term aridity changes in the western United States. Science 306:1015–1018CrossRefGoogle Scholar
  20. Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth-Sci Rev 81:93–134CrossRefGoogle Scholar
  21. Crane HR, Griffin JB (1968) University of Michigan radiocarbon dates XII. Radiocarbon 10:61–114Google Scholar
  22. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  23. Crowley TJ, Kim K-Y (1996) Comparison of proxy records of climate change and solar forcing. Geophys Res Lett 23:359–362CrossRefGoogle Scholar
  24. Crowley TJ, Lowery TS (2000) How warm was the Medieval Warm Period? Ambio 29:51–54Google Scholar
  25. D’Arrigo R, Mashig E, Frank D, Wilson R, Jacoby G (2005) Temperature variability over the past millennium inferred from northwestern Alaska tree rings. Clim Dyn 24:227–236CrossRefGoogle Scholar
  26. Davis OK (1994) The correlation of summer precipitation in the southwestern U.S.A. with isotopic records of solar activity during the Medieval Warm Period. Clim Change 26:271–287CrossRefGoogle Scholar
  27. DeMenocal PB (2001) Cultural responses to climate change during the Late Holocene. Science 292:667–673CrossRefGoogle Scholar
  28. Denton GH, Karlén W (1973) Holocene climatic variations—their pattern and possible cause. Quat Res 3:155–205CrossRefGoogle Scholar
  29. Denton GH, Karlén W (1977) Holocene glacial and tree-line variations in the White River Valley and Skolai Pass, Alaska and Yukon Territory. Quat Res 7:63–111CrossRefGoogle Scholar
  30. Depetris PJ, Pasquini AI (2000) The hydrological signal of the Perito Moreno Glacier damming of Lake Argentino (southern Andean Patagonia): the connection to climate anomalies. Glob Planet Change 26:367–374CrossRefGoogle Scholar
  31. Desloges JR, Ryder JM (1990) Neoglacial history of the Coast Mountains near Bella Coola, British Columbia. Can J Earth Sci 27:281–290CrossRefGoogle Scholar
  32. Dillehay T, Kolata AL, Pino M (2004) Pre-industrial human and environment interactions in northern Peru during the late Holocene. Holocene 14:272–281CrossRefGoogle Scholar
  33. Eddy JA (1977) Climate and the changing sun. Clim Change 1:173–190CrossRefGoogle Scholar
  34. Emerson TE, Lewis RB (eds) (1991) Cahokia and the hinterlands: middle Mississippian cultures of the Midwest. University of Illinois Press, ChicagoGoogle Scholar
  35. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  36. Fitzhugh W, Ward E (2000) Vikings: the North Atlantic saga. Smithsonian Institution Press, WashingtonGoogle Scholar
  37. Gellatly AF, Chinn TJH, Röthlisberger F (1988) Holocene glacier variations in New Zealand: a review. Quat Sci Rev 7:227–242CrossRefGoogle Scholar
  38. Glasser NF, Harrison S, Winchester V, Aniya M (2004) Late Pleistocene and Holocene paleoclimate and glacier variations in Patagonia. Glob Planet Change 43:79–101CrossRefGoogle Scholar
  39. Graham NE, Hughes MK (2007) Reconstructing the Mediaeval low stands of Mono Lake, Sierra Nevada, California, USA. Holocene 17:1197–1210CrossRefGoogle Scholar
  40. Graham NE, Hughes MK, Ammann CM, Cobb KM, Hoerling MP, Kennett DJ, Kennett JP, Rein B, Stott L, Wigand PE, Xu T (2007) Tropical Pacific—mid-latitude teleconnections in medieval times. Clim Change 83:241–285CrossRefGoogle Scholar
  41. Grove JM (1988) The Little Ice Age. Methuen, LondonCrossRefGoogle Scholar
  42. Grove JM, Switsur R (1994) Glacial geological evidence for the Medieval Warm Period. Clim Change 26:143–169CrossRefGoogle Scholar
  43. Hallett DJ, Mathewes RW, Walker RC (2003) A 1000-year record of forest fire, drought and lake-level change in southeastern British Columbia, Canada. Holocene 13:751–761CrossRefGoogle Scholar
  44. Haug GH, Günther D, Peterson LC, Sigman DM, Hughen KA, Aeschlimann B (2003) Climate and the collapse of Maya civilization. Science 299:1731–1735CrossRefGoogle Scholar
  45. Hendy EJ, Gagan MK, Alibert CA, McCulloch MT, Lough JM, Isdale PJ (2002) Abrupt decrease in tropical Pacific sea surface salinity at the end of Little Ice Age. Science 295:1511–1514CrossRefGoogle Scholar
  46. Herweijer C, Seager R, Cook ER (2006) North American droughts of the mid to late nineteenth century: a history, simulation and implication for Mediaeval drought. Holocene 16:159–171CrossRefGoogle Scholar
  47. Herweijer C, Seager R, Cook ER, Emile-Geay J (2007) North American droughts of the last millennium from a gridded network of tree-ring data. J Clim 20:1353–1376CrossRefGoogle Scholar
  48. Hodell DA, Curtis JH, Brenner M (1995) Possible role of climate in the collapse of Classic Maya civilization. Nature 375:391–394CrossRefGoogle Scholar
  49. Hodell DA, Brenner M, Curtis JH, Guilderson T (2001) Solar forcing of drought frequency in the Maya Lowlands. Science 292:1367–1370CrossRefGoogle Scholar
  50. Hoerling MP, Kumar A (2003) The perfect ocean for drought. Science 299:691–699CrossRefGoogle Scholar
  51. Holzhauser H, Magny M, Zumbühl HJ (2005) Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 15:789–801CrossRefGoogle Scholar
  52. Hormes A, Müller BU, Schlüchter C (2001) The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. Holocene 11:255–265CrossRefGoogle Scholar
  53. Hughes MK, Diaz HF (1994) Was there a ‘Medieval Warm Period’, and if so, where and when? Clim Change 26:109–142CrossRefGoogle Scholar
  54. Intergovernmental Panel on Climate Change (2007) Climate change 2007—the physical science basis. Cambridge University Press, New YorkGoogle Scholar
  55. Jirikowic JL, Damon PE (1994) The Medieval solar activity maximum. Clim Change 26:309–316CrossRefGoogle Scholar
  56. Joerin UE, Stocker TF, Schlüchter C (2006) Multicentury glacier fluctuations in the Swiss Alps during the Holocene. Holocene 16:697–704CrossRefGoogle Scholar
  57. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution paleoclimatic records for the last millennium. Holocene 8:467–483CrossRefGoogle Scholar
  58. Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science 292:662–667CrossRefGoogle Scholar
  59. Karlén W (1998) Climate variations and the enhanced greenhouse effect. Ambio 27:270–274Google Scholar
  60. Karlén W, Kuylenstierna J (1996) On solar forcing of Holocene climate: evidence from Scandinavia. Holocene 6:359–365CrossRefGoogle Scholar
  61. Karlén W, Källén E, Rodhe H, Backman J (1999) Man-made versus natural climate change. Ambio 28:376–377Google Scholar
  62. Kiladis GN, Diaz HF (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Clim 2:1069–1090CrossRefGoogle Scholar
  63. Koch J, Clague JJ (2006) Are insolation and sunspot activity the primary drivers of global Holocene glacier fluctuations? Pages Newsletter 14(3):20–21Google Scholar
  64. Koch J, Kilian R (2005) ‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile. Holocene 15:20–28CrossRefGoogle Scholar
  65. Koch J, Clague JJ, Osborn G (2007a) Glacier fluctuations during the last millennium in Garibaldi Provincial Park, southern Coast Mountains, British Columbia. Can J Earth Sci 44:1215–1233CrossRefGoogle Scholar
  66. Koch J, Osborn G, Clague JJ (2007b) Pre-Little Ice Age glacier fluctuations in Garibaldi Provincial Park, southern Coast Mountains, British Columbia, Canada. Holocene 17:1069–1078CrossRefGoogle Scholar
  67. Koch J, Menounos BP, Clague JJ (2009) Glacier change in Garibaldi Provincial Park, Southern Coast Mountains, British Columbia, since the Little Ice Age. Glob Planet Change 66:161–178CrossRefGoogle Scholar
  68. Kuylenstierna JL, Rosqvist GC, Holmlund P (1996) Late-Holocene glacier variations in the Cordillera Darwin, Tierra del Fuego, Chile. Holocene 6:353–358CrossRefGoogle Scholar
  69. Lacher S (1999) Dendrochronologische Untersuchungen moderner und historischer Gletscherstände in den Vorfeldern von Mendenhall und Herbert Gletscher (Juneau Icefield, Alaska). Diplomarbeit, Geografisches Institut der Universität Zürich, Birmensdorf, SwitzerlandGoogle Scholar
  70. Lamb HH (1965) The early Medieval warm epoch and its sequel. Palaeogeogr, Palaeoclimatol, Palaeoecol 1:13–37CrossRefGoogle Scholar
  71. Lamb HH (1995) Climate, history, and the modern world, 2nd ed. Routledge, LondonGoogle Scholar
  72. Larocque SJ, Smith DJ (2003) Little Ice Age glacial activity in the Mt. Waddington area, British Columbia Coast Mountains, Canada. Can J Earth Sci 40:1413–1436CrossRefGoogle Scholar
  73. Lawrence DB (1950) Glacier fluctuations for six centuries in southeastern Alaska and its relation to solar activity. Geogr Rev 40:191–222CrossRefGoogle Scholar
  74. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3198CrossRefGoogle Scholar
  75. Leavitt SW (1994) Major wet interval in White Mountains medieval warm period evidenced in \(\partial ^{13}\)C of bristlecone pine tree rings. Clim Change 26:299–307CrossRefGoogle Scholar
  76. Loso MG, Anderson RS, Anderson SP, Reimer PJ (2006) A 1500-year record of temperature and glacial response inferred from varved Iceberg Lake, southcentral Alaska. Quat Res 66:12–24CrossRefGoogle Scholar
  77. Luckman BH (1986) Reconstruction of Little Ice Age events in the Canadian Rocky Mountains. Geogr Phys Quat 40:17–28Google Scholar
  78. Luckman BH (1994) Evidence for climatic conditions between ca. 900–1300 A.D. in the Southern Canadian Rockies. Clim Change 26:171–182CrossRefGoogle Scholar
  79. Luckman BH (1996) Reconciling the glacial and dendrochronological records for the last millenium in the Canadian Rockies. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic variations and forcing mechanisms of the last 2000 years. NATO ASI Series I 41:85–108Google Scholar
  80. Luckman BH (2000) Little Ice Age in the Canadian rockies. Geomorphology 32:357–384CrossRefGoogle Scholar
  81. Luckman BH (2004) Neoglaciation. In: Goudie A (ed) Dictionary of geomorphology. Routledge, London, pp 711–713Google Scholar
  82. Luckman BH (2006) The neoglacial history of Peyto Glacier. In: Demuth MN, Munro DS, Young GJ (eds) Peyto glacier: One century of science. Nat Hydrol Res Inst Rep 8:25–58Google Scholar
  83. Luckman BH, Villalba R (2001) Assessing the synchroneity of glacier fluctuations in the western Cordillera of the Americas during the last millenium. In: Markgraf V (ed) Interhemispheric climate linkages. Academic, New York, pp 119–140CrossRefGoogle Scholar
  84. Luckman BH, Wilson RJS (2005) Summer temperatures in the Canadian Rockies during the last millennium; a revised record. Clim Dyn 24:131–144CrossRefGoogle Scholar
  85. Luckman BH, Holdsworth G, Osborn GD (1993) Neoglacial glacier fluctuations in the Canadian Rockies. Quat Res 39:144–153CrossRefGoogle Scholar
  86. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  87. Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762CrossRefGoogle Scholar
  88. Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Clim 18:447–456CrossRefGoogle Scholar
  89. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257CrossRefGoogle Scholar
  90. Mauquoy D, van Geel B, Blaauw M, Speranza A, van der Plicht J (2004) Changes in solar activity and Holocene climatic shifts derived from 14C wiggle-match dated peat deposits. Holocene 14:45–52CrossRefGoogle Scholar
  91. Meko DM, Woodhouse CA, Baisan CA, Knight T, Lukas JJ, Hughes MK, Salzer MW (2007) Medieval drought in the upper Colorado River Basin. Geophys Res Lett 34:L10705CrossRefGoogle Scholar
  92. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  93. Moore RD, Demuth MN (2001) Mass balance and streamflow variability at Place Glacier, Canada, in relation to recent climate fluctuations. Hydrol Process 15:3473–3486CrossRefGoogle Scholar
  94. Motyka RJ, Beget JE (1996) Taku Glacier, southwest Alaska, U.S.A.: late Holocene history of a tidewater glacier. Arct Alp Res 28:42–51CrossRefGoogle Scholar
  95. Nesje A, Dahl SO (2003) The ‘Little Ice Age’—only temperature?. Holocene 13:139–145CrossRefGoogle Scholar
  96. Nesje A, Bakke J, Dahl SO, Lie Ø, Matthews JA (2008) Norwegian mountain glaciers in the past, present and future. Glob Planet Change 60:10–27CrossRefGoogle Scholar
  97. Nicolussi K, Patzelt G (2000) Untersuchungen zur Holozänen Gletscherentwicklung von Pasterze und Gepatschferner (Ostalpen). Z Gletsch Glaz 36:1–87Google Scholar
  98. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677CrossRefGoogle Scholar
  99. Osborn G (1986) Lateral-moraine stratigraphy and Neoglacial history of Bugaboo Glacier, British Columbia. Quat Res 26:171–178CrossRefGoogle Scholar
  100. Osborn GD, Robinson BJ, Luckman BH (2001) Holocene and latest Pleistocene fluctuations of Stutfield Glacier, Canadian Rockies. Can J Earth Sci 28:1141–1155CrossRefGoogle Scholar
  101. Owen LA (2009) Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quat Sci Rev 28:2150–2164CrossRefGoogle Scholar
  102. Petersen KL (1994) A warm and wet Little Climatic Optimum and a cold and dry Little Ice Age in the Southern Rocky Mountains, U.S.A. Clim Change 26:243–269CrossRefGoogle Scholar
  103. Porter SC (1989) Late Holocene fluctuations of the fiord glacier system in Icy Bay, Alaska, U.S.A. Arct Alp Res 21:364–379CrossRefGoogle Scholar
  104. Preston RS, Person E, Deevey ES (1955) Yale natural radiocarbon measurements II. Science 122:954–960CrossRefGoogle Scholar
  105. Proulx DA (2008) Paracas and Nasca: regional cultures on the south coast of Peru. In: Silverman H, Isbell WH (eds) Handbook of South American Archaeology. Springer, New York, pp 563–585CrossRefGoogle Scholar
  106. Quilter J (2002) Moche politics, religion, and warfare. J World Prehist 16:145–195CrossRefGoogle Scholar
  107. Rampton VN, Denton GH, Karlén W (1978) Holocene glacial and tree-line variations in the White River valley and Skolai Pass, Alaska and Yukon Territory: discussion and reply. Quat Res 10:130–134CrossRefGoogle Scholar
  108. Reimer PJ (2004) Spots from rings. Nature 431:1047–1048CrossRefGoogle Scholar
  109. Reyes AV, Clague JJ (2004) Stratigraphic evidence for multiple Holocene advances of Lillooet Glacier, Southern Coast Mountains, British Columbia. Can J Earth Sci 40:903–918CrossRefGoogle Scholar
  110. Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Nino/Southern Osillation (ENSO). Monthly Weather Rev 114:2352–2362CrossRefGoogle Scholar
  111. Röthlisberger F (1986) 10 000 Jahre Gletschergeschichte der Erde. Verlag Sauerländer, AarauGoogle Scholar
  112. Ryder JM (1987) Neoglacial history of the Stikine-Iskut area, Northern Coast Mountains, British Columbia. Can J Earth Sci 24:1294–1301CrossRefGoogle Scholar
  113. Ryder JM, Thomson B (1986) Neoglaciation in the southern Coast Mountains of British Columbia: chronology prior to the late Neoglacial maximum. Can J Earth Sci 23:273–287CrossRefGoogle Scholar
  114. Seager R, Harnik N, Kushnir Y, Robinson W, Miller J (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16:2960–2978CrossRefGoogle Scholar
  115. Seager R, Harnik N, Robinson WA, Kushnir Y, Ting M, Huang H-P, Velez J (2005a) Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart J Roy Met Soc 131:1501–1527CrossRefGoogle Scholar
  116. Seager R, Kushnir Y, Herweijer C, Naik N, Velez J (2005b) Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J Clim 18:4065–4088CrossRefGoogle Scholar
  117. Shabbar A, Khandekar M (1996) The impact of El Nino-Southern oscillation on the temperature field over Canada. Atm-Ocean 34:401–461Google Scholar
  118. Shabbar A, Bonsal B, Khandekar M (1997) Canadian precipitation patterns associated with the Southern Oscillation. J Clim 10:3016–3027CrossRefGoogle Scholar
  119. Shimada I, Schaaf CB, Thompson LG, Mosley-Thompson E (1991) Cultural impacts of severe droughts in the prehistoric Andes: application of a 1,500-year ice core precipitation record. World Archaeol 22:247–270CrossRefGoogle Scholar
  120. Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431:1084–1087CrossRefGoogle Scholar
  121. Stahle DW, Cook ER, Cleaveland MK, Therrell MD, Meko DM, Grissino-Mayer HD, Watson E, Luckman BH (2000) Tree-ring data document 16th century megadrought over North America. Eos 81:121CrossRefGoogle Scholar
  122. Stine S (1994) Extreme and persistent drought in California and Patagonia during Mediaeval time. Nature 369:546–549CrossRefGoogle Scholar
  123. Strelin J, Casassa G, Rosqvist G, Holmlund P (2008) Holocene glaciations in the Ema Glacier valley, Monte Sarmiento Massif, Tierra del Fuego. Palaeogeogr, Palaeoclimatol, Palaeoecol 260:299–314CrossRefGoogle Scholar
  124. Stuiver M (1961) Variations in radiocarbon concentration and sunspot activity. J Geophys Res 66:273–276CrossRefGoogle Scholar
  125. U.S. Department of Energy (1989) Atmospheric carbon dioxide and the greenhouse effect. NTIS, SpringfieldGoogle Scholar
  126. Villalba R (1994) Tree-ring and glacial evidence for the Medieval Warm Epoch and the Little Ice Age in Southern South America. Clim Change 26:183–197CrossRefGoogle Scholar
  127. Villalba R, D’Arrigo RD, Cook ER, Wiles G, Jacoby GC (2001) Decadal-scale climatic variability along the extratropical western coast of the Americas: evidence from the tree-ring records. In: Markgraf V (ed) Interhemispheric climate linkages. Academic, New York, pp 155–172CrossRefGoogle Scholar
  128. Wang H, Ting M (2000) Covariabilities of winter U.S. precipitation and Pacific sea surface temperatures. J Clim 13:3711–3719CrossRefGoogle Scholar
  129. Watson E, Luckman BH, Yu B (2006) Long-term relationships between reconstructed seasonal mass balance at Peyto Glacier, Canada, and Pacific sea surface temperatures. Holocene 16:783–790CrossRefGoogle Scholar
  130. Weber G (2006) Dendrochronologische Untersuchungen moderner und historischer Gletscherstände in den Vorfeldern von Eagle, Herbert und Mendenhall Gletscher (Juneau Icefield, Südost Alaska). Diplomarbeit, Geografisches Institut der Universität Zürich, Birmensdorf, SwitzerlandGoogle Scholar
  131. Wiles GC, Calkin PE (1994) Late Holocene, high-resolution glacial chronologies and climate, Kenai Mountains, Alaska. Geol Soc Am Bull 106:281–303CrossRefGoogle Scholar
  132. Wiles GC, Barclay DJ, Calkin PE (1999) Tree-ring dated ‘Little Ice Age’ histories of maritime glaciers from western Prince William Sound, Alaska. Holocene 9:163–173CrossRefGoogle Scholar
  133. Wiles GC, Jacoby GC, Davi NK, McAllister RP (2002) Late Holocene glacier fluctuations in the Wrangell Mountains, Alaska. Geol Soc Am Bull 114:896–908CrossRefGoogle Scholar
  134. Wiles GC, D’Arrigo RD, Villalba R, Calkin PE, Barclay DJ (2004) Century-scale solar variability and Alaskan temperature change over the past millennium. Geophys Res Lett 31:L15203CrossRefGoogle Scholar
  135. Wiles GC, Barclay DJ, Calkin PE, Lowell TV (2008) Century to millennial-scale temperature variations for the last two thousand years indicated from glacial geologic records of Southern Alaska. Glob Planet Change 60:115–125CrossRefGoogle Scholar
  136. Winkler S, Matthews JA, Shakesby RA, Dresser PQ (2003) Glacier variations in Breheimen, Southern Norway: dating Little Ice Age moraine sequences at seven low-altitude glaciers. J Quat Sci 18:395–413CrossRefGoogle Scholar
  137. Woodhouse CA, Overpeck JT (1998) 2000 years of drought variability in the central United States. Bull Am Meteorol Soc 79:2693–2714CrossRefGoogle Scholar
  138. Yalcin K, Wake CP, Kreutz KJ, Whitlow SI (2006) A 1000-yr record of forest fire activity from Eclipse Icefield, Yukon, Canada. Holocene 16:200–209CrossRefGoogle Scholar
  139. Yang B, Bräuning A, Dong Z, Zhang Z, Keqing J (2008) Late Holocene monsoonal temperate glacier fluctuations on the Tibetan Plateau. Glob Planet Change 60:126–140CrossRefGoogle Scholar
  140. Yuan F, Linsley BK, Howe SS, Lund SP, McGeehin JP (2006) Late Holocene lake-level fluctuations in Walker Lake, Nevada, USA. Palaeogeogr, Palaeoclimatol, Palaeoecol 240:497–507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Earth SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations