Climatic Change

, Volume 104, Issue 3–4, pp 515–537 | Cite as

Scenarios with MIT integrated global systems model: significant global warming regardless of different approaches

  • Ronald Prinn
  • Sergey Paltsev
  • Andrei Sokolov
  • Marcus Sarofim
  • John Reilly
  • Henry Jacoby
Article

Abstract

A wide variety of scenarios for future development have played significant roles in climate policy discussions. This paper presents projections of greenhouse gas (GHG) concentrations, sea level rise due to thermal expansion and glacial melt, oceanic acidity, and global mean temperature increases computed with the MIT Integrated Global Systems Model (IGSM) using scenarios for twenty-first century emissions developed by three different groups: intergovernmental (represented by the Intergovernmental Panel on Climate Change), government (represented by the U.S. government Climate Change Science Program) and industry (represented by Royal Dutch Shell plc). In all these scenarios the climate system undergoes substantial changes. By 2100, the CO2 concentration ranges from 470 to 1020 ppm compared to a 2000 level of 365 ppm, the CO2-equivalent concentration of all greenhouse gases ranges from 550 to 1780 ppm in comparison to a 2000 level of 415 ppm, oceanic acidity changes from a current pH of around 8 to a range from 7.63 to 7.91, in comparison to a pH change from a preindustrial level by 0.1 unit. The global mean temperature increases by 1.8 to 7.0°C relative to 2000. Such increases will require considerable adaptation of many human systems and will leave some aspects of the earth’s environment irreversibly changed. Thus, the remarkable aspect of these different approaches to scenario development is not the differences in detail and philosophy but rather the similar picture they paint of a world at risk from climate change even if there is substantial effort to reduce emissions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asadoorian M, Sarofim M, Reilly J, Paltsev S, Forest C (2006) Historical anthropogenic emissions inventories for greenhouse gases and major criteria pollutants. MIT Joint Program for the Science and Policy of Global Change, Technical Note 8, CambridgeGoogle Scholar
  2. Doney S, Fabry V, Feely R, Kleypas J (2009) Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1:169–192CrossRefGoogle Scholar
  3. Forest C, Stone PH, Sokolov AP (2008) Constraining climate model parameters from observed 20th century changes. Tellus A60(5):911–920CrossRefGoogle Scholar
  4. IPCC [Intergovernmental Panel on Climate Change] (2001) Climate change 2001: the scientific basis. In: Houghton J et al (eds) Contribution of working group I to the third assessment report of the intergovenmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  5. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AG, Zhao Z (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  6. Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque J, Manning M, Matthews B, Meehl J, Meyer L, Mitchel J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer R, van Vuuren D, Weyant J, Wilbanks T, van Ypersele J, Jurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  7. Nakicenovic N, Alcamo J, Davis B, de Vries B, Fenhann J, Gan S, Gregory K, Grubler A, Jung T, Kram T, Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart S, van Rooijen N, Victor N, Dadi Z (2000) Special report on emissions scenarios. Cambridge University Press, CambridgeGoogle Scholar
  8. Paltsev S, Reilly J, Jacoby HD, Eckaus R, McFarland J, Sarofim M, Asadoorian M, Babiker M (2005) The MIT Emissions Prediction and Policy Analysis (EPPA) model: Version 4. MIT Joint Program for the Science and Policy of Global Change, Report 125, CambridgeGoogle Scholar
  9. Plattner G, Knutti R, Joos F, Stocker TF, Brovkin V, Driesschaert E, Dutkiewicz S, Eby N, Edwards NR, Fichefet T, Jones C, Loutre MF, Matthews HD, Mouchet A, Muller SA, Nawrath S, Sokolov A, Strassmann K, Weaver A (2008) Long-term projections of climate change commitment. J Clim 21:2721–2751CrossRefGoogle Scholar
  10. Prinn R, Jacoby HD, Sokolov AP, Want C, Xiao X, Yang Z, Eckaus RS, Stone P, Ellerman AD, Melillo J, Fitzmaurice J, Kicklighter D, Holian G, Liu Y (1999) Integrated global system for climate policy assessment: feedback and sensitivity studies. Clim Change 41:469–546CrossRefGoogle Scholar
  11. Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, LondonGoogle Scholar
  12. Sabine CL, Heiman M, Artaxo P, Bakker D, Chen C, Field C, Gruber N, LeQuere C, Prinn R, Richey J, Romero-Lankao P, Sathaye J, Valentini R (2004) Current status and past trend of the carbon cycle. In Field C, Raupach M (eds) The global carbon cycle: SCOPE Project 62. Island, Washington, pp 17–44Google Scholar
  13. Sarofim M, Forest C, Reiner D, Reilly J (2005) Stabilization and global climate change. Glob Planet Change 47:266–272CrossRefGoogle Scholar
  14. Shell (2008) Shell energy scenarios to 2050. Shell International BV, The Hague, The Netherlands. http://www.shell.com/scenarios
  15. Sokolov AP, Schlosser CA, Dutkiewicz S, Paltsev S, Kicklighter D, Jacoby HD, Prinn R, Forest C, Reilly J, Wang C, Felzer B, Sarofim M, Scott J, Stone PH, Melillo J, Cohen J (2005) The MIT Integrated Global System Model (IGSM) Version 2: model description and baseline evaluation. MIT Joint Program for the Science and Policy of Global Change, Report 124, CambridgeGoogle Scholar
  16. Sokolov AP, Kicklighter D, Melillo J, Felzer B, Schlosser CA, Cronin T (2008) Consequences of considering carbon/nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J Clim 21(15):3776–3796CrossRefGoogle Scholar
  17. Sokolov AP, Stone PH, Forest CE, Prinn R, Sarofim MC, Webster M, Paltsev S, Schlosser CA, Kicklighter D, Dutkiewicz S, Reilly J, Wang C, Felzer B, Jacoby HD (2009) Probablistic forecast for 21st century climate based on uncertainties in emissions (without policy) and climate parameters. J Clim 22(19):5175–5204CrossRefGoogle Scholar
  18. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  19. US CCSP [United States Climate Change Science Program] (2007) CCSP synthesis and assessment product 2.1, part a: scenarios of greenhouse gas emissions and atmospheric concentrations. In: Clarke L et al. (eds) US Climate Change Science Program. Department of Energy, WashingtonGoogle Scholar
  20. Van Vuuren D, Meinshausen M, Plattner G-K, Strassmann K, Smith S, Wigley T, Raper S, Riahi K, de la Chesnaye F, den Elzen M, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly J (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci USA 105(40):15258–15262CrossRefGoogle Scholar
  21. Webster M, Sokolov A, Reilly J, Forest C, Paltsev S, Schlosser A, Wang C, Kicklighter D, Sarofim M, Melillo J, Prinn R, Jacoby H (2009) Analysis of climate policy targets under uncertainty. MIT Joint Program for the Science and Policy of Global Change, Report 180, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ronald Prinn
    • 1
  • Sergey Paltsev
    • 1
  • Andrei Sokolov
    • 1
  • Marcus Sarofim
    • 1
  • John Reilly
    • 1
  • Henry Jacoby
    • 1
  1. 1.Joint Program on the Science and Policy of Global ChangeMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations