Advertisement

Climatic Change

, Volume 101, Issue 1–2, pp 7–40 | Cite as

European climate of the past 500 years: new challenges for historical climatology

  • Rudolf Brázdil
  • Petr Dobrovolný
  • Jürg Luterbacher
  • Anders Moberg
  • Christian Pfister
  • Dennis Wheeler
  • Eduardo Zorita
Article

Abstract

Temperature reconstructions from Europe for the past 500 years based on documentary and instrumental data are analysed. First, the basic documentary data sources, including information about climate and weather-related extremes, are described. Then, the standard palaeoclimatological reconstruction method adopted here is discussed with a particular application to temperature reconstructions from documentary-based proxy data. The focus is on two new reconstructions; January–April mean temperatures for Stockholm (1502–2008), based on a combination of data for the sailing season in the Stockholm harbour and instrumental temperature measurements, and monthly Central European temperature (CEuT) series (1500–2007) based on documentary-derived temperature indices of the Czech Republic, Germany and Switzerland combined with instrumental records from the same countries. The two series, both of which are individually discussed in greater detail in subsequent papers in this special edition, are here compared and analysed using running correlations and wavelet analysis. While the Stockholm series shows a pronounced low-frequency component, the CEuT series indicates much weaker low-frequency variations. Both series are analysed with respect to three different long-period reconstructions of the North Atlantic Oscillation (NAO) and are compared with other European temperature reconstructions based on tree-rings, wine-harvest data and various climate multiproxies. Correlation coefficients between individual proxy-based series show weaker correlations compared to the instrumental data. There are also indications of temporally varying temperature cross-correlations between different areas of Europe. The two temperature reconstructions have also been compared to geographically corresponding temperature output from simulations with global and regional climate models for the past few centuries. The findings are twofold: on the one hand, the analysis reinforces the hypothesis that the index-data based CEuT reconstruction may not appropriately reflect the centennial scale variations. On the other hand, it is possible that climate models may underestimate regional decadal variability. By way of a conclusion, the results are discussed from a broader point of view and attention is drawn to some new challenges for future investigations in the historical climatology in Europe.

Keywords

North Atlantic Oscillation Index Temperature Reconstruction Instrumental Data Documentary Evidence Wavelet Power Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin JM, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46Google Scholar
  2. Barriendos M (2005) Climate and culture in Spain. Religious responses to extreme climatic events in the Hispanic Kingdoms (16th–19th centuries). In: Behringer W, Lehmann H, Pfister C (eds) Cultural consequences of the “Little Ice Age”. Vandenhoeck & Ruprecht, Göttingen, pp 379–414Google Scholar
  3. Barriendos M (2009) Historical climatology in Spain. Conceptual and methodological renovation in view of the challenges of the climate change. In: Kirchhofer A, Krämer D, Merki CA, Poliwoda G, Stuber M, Summermatter S (eds) Nachhaltige Geschichte. Festschrift für Christian Pfister. Chronos, Zürich, pp 49–64Google Scholar
  4. Bell WT, Ogilvie AEJ (1978) Weather compilations as a source of data for the reconstruction of European climate during the Medieval period. Clim Change 1:331–348Google Scholar
  5. Beranová R, Huth R (2008) Time variations of the effects of circulation variability modes on European temperature and precipitation in winter. Int J Climatol 28:139–158Google Scholar
  6. Böhm R (2005) The early instrumental paradox. Presentation at the ALP-IMP third general annual meeting, 6–8 April, BolognaGoogle Scholar
  7. Böhm R, Jones PD, Hiebl J, Brunetti M, Frank D, Maugeri M (2009) The early instrumental warm-bias: a solution for long Central European temperature series 1760–2007. Clim Change. doi: 10.1007/s10584-009-9649-4 Google Scholar
  8. Brandsma T, Können GP (2005) Application of nearest-neighbor resampling for homogenizing temperature records on a daily to sub-daily level. Int J Climatol 26:75–89Google Scholar
  9. Brandsma T, Können GP, Wessels HRA (2003) Empirical estimation of the effect of urban heat advection on the temperature series of De Bilt (The Netherlands). Int J Climatol 23:829–845Google Scholar
  10. Brázdil R (1996) Reconstructions of past climate from historical sources in the Czech Lands. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic variations and forcing mechanisms of the last 2000 years. Springer, Berlin, pp 409–431Google Scholar
  11. Brázdil R (2000) Historical climatology: definition, data, methods, results. Geogr Čas 52:99–121Google Scholar
  12. Brázdil R (2002) Patterns of climate in Central Europe since Viking times. In: Wefer G, Berger W, Behre KE, Jansen E (eds) Climate development and history in the north Atlantic realm. Springer, Berlin, pp 355–368Google Scholar
  13. Brázdil R (2003) Historical climatology and its progress after 1990. In: Laszlovsky J, Szabó P (eds) People and nature in historical perspective. Central European University, Budapest, pp 197–227Google Scholar
  14. Brázdil R (2009) Historical climatology and its contribution to climate reconstruction in Europe. In: Kirchhofer A, Krämer D, Merki CA, Poliwoda G, Stuber M, Summermatter S (eds) Nachhaltige Geschichte. Festschrift für Christian Pfister. Chronos, Zürich, pp 65–89Google Scholar
  15. Brázdil R, Budíková M (1999) An urban bias in air temperature fluctuations at the Klementinum, Prague, the Czech Republic. Atmos Environ 33:4211–4217Google Scholar
  16. Brázdil R, Dobrovolný P (2010) Historical climate in Central Europe during the last 500 years. In: Przybylak R, Majorowicz J, Brázdil R, Kejna M (eds) The Polish climate in the European context: an historical overview. Springer, Berlin, pp 41–70Google Scholar
  17. Brázdil R, Valášek H, Sviták Z, Macková J (2002) History of weather and climate in the Czech Lands V. Instrumental meteorological measurements in Moravia up to the end of the eighteenth century. Masaryk University, BrnoGoogle Scholar
  18. Brázdil R, Valášek H, Sviták Z (2003) Meteorological and hydrological extremes in the Dietrichstein domains of Dolní Kounice and Mikulov between 1650 and 1849 according to official economic records of natural disasters. Geogr Čas 55:325–353Google Scholar
  19. Brázdil R, Dobrovolný P, Elleder L, Kakos V, Kotyza O, Květoň V, Macková J, Müller M, Štekl J, Tolasz R, Valášek H (2005a) Historické a současné povodně v České republice (Historical and Recent Floods in the Czech Republic). Masarkova univerzita, Český hydrometeorologický ústav, Brno PrahaGoogle Scholar
  20. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005b) Historical climatology in Europe—the state of the art. Clim Change 70:363–430Google Scholar
  21. Brázdil R, Valášek H, Macková J (2005c) Meteorologická pozorování v Brně v první polovině 19. století. Historie počasí a hydrometeorologických extrémů (Meteorological observations in Brno in the first half of the 19th century. History of weather and hydrometeorological extremes). Archiv města Brna, BrnoGoogle Scholar
  22. Brázdil R, Valášek H, Chromá K (2006) Documentary evidence of an economic character as a source for the study of meteorological and hydrological extremes and their impacts on human activities. Geogr Ann 88A:79–86Google Scholar
  23. Brázdil R, Černušák T, Řezníčková L (2008a) Weather information in the diaries of the Premonstratensian Abbey at Hradisko, in the Czech Republic, 1693–1783. Weather 63:201–207CrossRefGoogle Scholar
  24. Brázdil R, Zahradníček P, Dobrovolný P, Kotyza O, Valášek H (2008b) Historical and recent viticulture as a source of climatological knowledge in the Czech Republic. Geografie – Sb Čes Geogr Spol 113:351–371Google Scholar
  25. Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2009) Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 29:223–242Google Scholar
  26. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemisphere: part 1, local and regional climate signals. Holocene 12:737–758Google Scholar
  27. Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106Google Scholar
  28. Bullón T (2008) Winter temperatures in the second half of the sixteenth century in the central area of the Iberian Peninsula. Clim Past 4:357–367Google Scholar
  29. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, A.D. 755–2004. J Climate 19:5605–5623Google Scholar
  30. Camuffo D (2002) History of the long series of daily air temperature in Padova (1725–1998). Clim Change 53:7–75Google Scholar
  31. Camuffo D, Jones P (eds) (2002) Improved understanding of past climate variability from early daily European instrumental sources. Kluwer Academic, DordrechtGoogle Scholar
  32. Camuffo D, Bertolin C, Barriendos M, Dominguez-Castro F, Cocheo C, Enzi S, Sghedoni M, della Valle A, Garnier E, Alcoforado MJ, Xoplaki E, Luterbacher J, Diodato N, Maugeri M, Nunes MF, Rodriguez R (2009) 500-year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Clim Change (revised)Google Scholar
  33. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880Google Scholar
  34. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Le Roy Ladurie E (2004) Historical phenology: grape ripening as a past climate indicator. Nature 432:289–290Google Scholar
  35. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402Google Scholar
  36. Cook ER, D’Arrigo RD, Mann ME (2002) A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation Index since A.D. 1400. J Climate 15:1754–1764Google Scholar
  37. de Kraker AMJ (2006) Historical climatology, 1950–2006. An overview of a developing science with a focus on the Low Countries. BELGEO 2006:307–337Google Scholar
  38. Della-Marta PM, Wanner H (2006) A method of homogenizing the extremes and the mean of daily temperature measurements. J Climate 19:4179–4197Google Scholar
  39. Dietrich-Felber U (2004) Using Java and XML in interdisciplinary research: a new data-gathering tool for historians working with EuroClimHist. Hist Methods 37:174–185Google Scholar
  40. Diodato N (2007) Climatic fluctuations in southern Italy since the 17th century: reconstruction with precipitation records at Benevento. Clim Change 80:411–431Google Scholar
  41. Dobrovolný P, Brázdil R, Valášek H, Kotyza O, Macková J, Halíčková M (2009a) A standard palaeoclimatological approach to temperature reconstruction in historical climatology: an example from the Czech Republic, AD 1718–2007. Int J Climatol 29:1478–1492Google Scholar
  42. Dobrovolný P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson R, van Engelen A, Limanówka D, Kiss A, Halíčková M, Macková J, Riemann D, Luterbacher J, Böhm R (2009b) Monthly and seasonal temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim Change. doi: 10.1007/s10584-009-9724-x Google Scholar
  43. Dominguez-Castro F, Santisteban JI, Barriendos M, Mediavilla R (2008) Reconstruction of drought episodes for central Spain from rogation ceremonies recorded at the Toledo Cathedral from 1506 to 1900: a methodological approach. Glob Planet Change 63:230–242Google Scholar
  44. Esper J, Frank DC, Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed amplitude for the past millennium. Geophys Res Lett 32:L07711Google Scholar
  45. Esper J, Frank DC, Büntgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34:L17702Google Scholar
  46. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310Google Scholar
  47. García-Herrera R, Können GP, Wheeler D, Prieto MR, Jones PD, Koek FB (2005) CLIWOC: a climatological database for the world’s oceans 1750–1854. Clim Change 73:1–12Google Scholar
  48. Gimmi U, Luterbacher J, Pfister C, Wanner H (2007) A method to reconstruct long precipitation series using systematic descriptive observations in weather diaries: the example of the precipitation series for Bern, Switzerland (1760–2003). Theor Appl Climatol 87:185–199Google Scholar
  49. Glaser R (2001) Klimageschichte Mitteleuropas. 1000 Jahre Wetter, Klima, Katastrophen. Primus, DarmstadtGoogle Scholar
  50. Glaser R (2008) Klimageschichte Mitteleuropas. 1200 Jahre Wetter, Klima, Katastrophen. Primus, DarmstadtGoogle Scholar
  51. Glaser R, Riemann D (2009) A thousand year record of climate variation for Central Europe at a monthly resolution. J Quat Sci 24:437–449Google Scholar
  52. Glaser R, Riemann D, Schönbein J, Barriendos M, Brázdil R, Bertolin C, Camuffo C, Deutsch M, Dobrovolný P, van Engelen A, Enzi S, Halíčková M, Koenig SJ, Kotyza O, Limanowka D, Macková J, Sghedoni M, Martin B, Himmelsbach I (2009) 500 years variability of European floods. Clim Change (revised)Google Scholar
  53. Grove JM, Conterio A (1994) Climate in the eastern and central Mediterranean, 1675 to 1715. In: Frenzel B, Pfister C, Gläser B (eds) Climatic trends and anomalies in Europe 1675–1715. Gustav Fischer, Stuttgart, pp 275–286Google Scholar
  54. Guiot J, Nicault A, Rathegeber C, Edouard JL, Guibal F, Pichard G, Till C (2005) Last-millenium summer temperature variations in western Europe based on proxy data. Holocene 15:489–500.Google Scholar
  55. Harms W, Schilling M (2008) Das illustrierte Flugblatt der frühen Neuzeit: Traditionen, Wirkungen, Kontexte. S. Hirzel, StuttgartGoogle Scholar
  56. Hirschi JJM, Sinha B (2007) Negative NAO and cold Eurasian winters: how exceptional was the winter of 1962/1963? Weather 62:43–48Google Scholar
  57. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679Google Scholar
  58. Jacobeit J, Jönsson P, Bärring L, Beck C, Ekström M (2001) Zonal indices for Europe 1780–1995 and running correlations with temperature. Clim Change 48:219–241Google Scholar
  59. Jevrejeva S (2001) Severity of winter seasons in the northern Baltic Sea between 1529 and 1990: reconstruction and analysis. Clim Res 17:55–62Google Scholar
  60. Jones PD (1999) Classics in physical geography revisited. Prog Phys Geogr 23:425–428Google Scholar
  61. Jones PD (2001) Early European instrumental records. In: Jones PD, Ogilvie AEJ, Davies TD, Briffa KR (eds) History and climate: memories of the future? Plenum, New York, pp 55–77Google Scholar
  62. Jones P (2008) Historical climatology—a state of the art review. Weather 63:181–186Google Scholar
  63. Jones PD, Briffa KR (2006) Unusual climate in northwest Europe during the period 1730 to 1745 based on instrumental and documentary data. Clim Change 79:361–379Google Scholar
  64. Jones P, Hulme M (1997) The changing temperature of Central England. In: Hulme M, Barrow E (eds) Climates of the British Isles: present, past and future. Routledge, London, pp 173–196Google Scholar
  65. Jones PD, Briffa KR, Osborn TJ (2003) Changes in the Northern Hemisphere annual cycle: implications for paleoclimatology? J Geophys Res 108:4588Google Scholar
  66. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49Google Scholar
  67. Kajander J (1993) Methodological aspects on river cryophenology exemplified by a tricentenniel break-up time series from Tornio. Geophysica 29:73–95Google Scholar
  68. Kiss A (2009) Historical climatology in Hungary: role of documentary evidence in the study of past climates and hydrometeorological extremes. Idöjárás 113:315–339Google Scholar
  69. Koslowski G, Glaser R (1999) Variations in reconstructed ice winter severity in the Western Baltic from 1501 to 1995, and their implications for the North Atlantic Oscillation. Clim Change 41:175–191Google Scholar
  70. Kuglitsch FG, Toreti A, Xoplaki E, Della-Marta PM, Luterbacher J, Wanner H (2009) Homogenization of daily maximum temperature series in the Mediterranean. J Geophys Res 114:D15108Google Scholar
  71. Legrand JP, LeGoff M (1992) Les observations météorologiques de Louis Morin entre 1670 et 1713. Monographie 6, Direction de la Météorologie Nationale, ParisGoogle Scholar
  72. Leijonhufvud L, Wilson R, Moberg A (2008) Documentary data provide evidence of Stockholm average winter to spring temperatures in the eighteenth and nineteenth centuries. Holocene 18:333–343Google Scholar
  73. Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2009) Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Clim Change. doi: 10.1007/s10584-009-9650-y Google Scholar
  74. Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2002) Extending North Atlantic Oscillation reconstructions back to 1500. Atmos Sci Lett 2:114–124Google Scholar
  75. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503Google Scholar
  76. Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) The exceptional European warmth of autumn 2006 and winter 2007: historical context, the underlying dynamics and its phenological impacts. Geophys Res Lett 34:L12704Google Scholar
  77. Luterbacher J, Koenig SJ, Franke J, van der Schrier G, Zorita E, Moberg A, Jacobeit J, Della-Marta PM, Küttel M, Xoplaki E, Wheeler D, Rutishauer T, Stössel M, Wanner H, Brázdil R, Dobrovolný P, Camuffo D, Bertolin C, van Engelen A, Gonzalez-Rouco FJ, Wilson R, Pfister C, Limanówka D, Nordli Ø, Leijonhufvud L, Söderberg J, Allan R, Barriendos M, Glaser R, Riemann D, Hao Z, Zerefos CS (2009) Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models. Clim Change. doi: 10.1007/s10584-009-9782-0 Google Scholar
  78. Macdonald N (2007) Epigraphic records: a valuable resource in re-assessing flood risk and long-term climate variability. Environ Hist 12:136–140Google Scholar
  79. Macdonald N, Jones CA, Davies SJ, Charnell-White C (2009) Historical weather accounts from Wales: an assessment of their potential for reconstructing climate. Weather (in press)Google Scholar
  80. Manley G (1974) Central England temperatures: monthly means 1659 to 1973. Q J R Meteorol Soc 100:389–405Google Scholar
  81. Mariani L, Parisi S, Failla O, Cola G, Zoia G, Bonardi L (2009) Tirano (1624–1930): a long time series of harvest dates for grapevine. Italian Journal of Agrometeorology 14:7–16Google Scholar
  82. Mauelshagen F (2008) Wunderkammer auf Papier. Die Wickiana zwischen Reformation und Volksglaube. Studentendruckerei, ZürichGoogle Scholar
  83. Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34:L20705Google Scholar
  84. Moberg A, Bergström H, Ruiz Kringsman J, Svanered O (2002) Daily air temperature and pressure series for Stockholm (1756–1998). Clim Change 53:171–212Google Scholar
  85. Moberg A, Alexandersson H, Bergström H, Jones PD (2003) Were Southern Swedish summer temperatures before 1860 as warm as measured? Int J Climatol 23:1495–1521Google Scholar
  86. Munzar J, Deutsch M, Elleder L, Ondráček S, Kallabová E, Hrádek M (2006) Historical floods in Central Europe and their documentation by means of floodmarks and other epigraphical monuments. Morav Geogr Rep 14:26–44Google Scholar
  87. Niedźwiedź T (2004) Rekonstrukcja warunków termicznych lata w Tatrach od 1550 roku (Reconstruction of summer temperature in the Tatra Mountains since 1550). In: Kotarba A (ed) Rola małej epoki lodowej w przekształcaniu środowiska przyrodniczego. Tatr Prace Geogr 197:57–88Google Scholar
  88. Nordli O, Lundstad E, Ogilvie AEJ (2007) A late winter–early spring temperature reconstruction for Southeastern Norway from 1758–2006. Ann Glaciol 46:404–408Google Scholar
  89. Nussbaumer S, Zumbühl HJ, Steiner D (2007) Fluctuations of the Mer de Glace (Mont Blanc area, France) AD 1500–2050. An interdisciplinary approach using new historical data and neural network simulations. Z Gletsch.kd Glazialgeol 40:4–183Google Scholar
  90. Parker DE, Legg TP, Folland CK (1992) A new daily Central England temperature series. Int J Climatol 12:317–342Google Scholar
  91. Peterson TC, Easterling DR, Karl TR, Groisman P, Auer I, Böhm R, Plummer N, Nicholis N, Torok S, Vincent L, Tuomenvirta H, Salinger J, Førland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18:1493–1517Google Scholar
  92. Pfister C (1978) Die älteste Niederschlagsreihe Mitteleuropas: Zürich 1708–1754. Meteorol Rundsch 31:56–62Google Scholar
  93. Pfister C (1984) Klimageschichte der Schweiz 1525–1860. Das Klima der Schweiz und seine Bedeutung in der Geschichte von Bevölkerung und Landwirtschaft. Paul Haupt, BernGoogle Scholar
  94. Pfister C (1992) Monthly temperature and precipitation in central Europe 1525–1979: quantifying documentary evidence on weather and its effects. In: Bradley RS, Jones PD (eds) Climate Since AD 1500. Routledge, London, pp 118–143Google Scholar
  95. Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen (1496–1995). Paul Haupt, BernGoogle Scholar
  96. Pfister C (2001) Klimawandel in der Geschichte Europas. Zur Entwicklung und zum Potenzial der Historischen Klimatologie. Österr Z Geschwiss 12:7–43Google Scholar
  97. Pfister C, Bareiss W (1994) The climate in Paris between 1675 and 1715 according to the Meteorological Journal of Louis Morin. In: Frenzel B, Pfister C, Gläser B (eds) Climatic trends and anomalies in Europe 1675–1715. Gustav Fischer, Stuttgart, pp 151–171Google Scholar
  98. Pfister C, Brázdil R (1999) Climatic variability in sixteenth-century Europe and its social dimension: a synthesis. Clim Change 43:5–53Google Scholar
  99. Pfister C, Brázdil R (2006) Social vulnerability to climate in the “Little Ice Age”: an example from Central Europe in the early 1770s. Clim Past 2:115–129CrossRefGoogle Scholar
  100. Pfister C, Schüle H (1994) Coding climate proxy information for the EURO-CLIMHIST data-base. In: Frenzel B, Pfister C, Gläser B (eds) Climatic trends and anomalies in Europe 1675–1715. Gustav Fischer, Stuttgart, pp 461–476Google Scholar
  101. Pfister C, Brázdil R, Glaser R, Barriendos M, Camuffo D, Deutsch M, Dobrovolný P, Enzi S, Guidoboni E, Kotyza O, Militzer S, Rácz L, Rodrigo FS (1999) Documentary evidence on climate in sixteenth-century Europe. Clim Change 43:55–110Google Scholar
  102. Pfister C, Brázdil R, Obrebska-Starkel B, Starkel L, Heino R, von Storch H (2001) Strides made in reconstructing past weather and climate. EOS—Transactions American Geophysical Union 82:248Google Scholar
  103. Pfister C, Luterbacher J, Wanner H, Wheeler D, Brázdil R, Ge Q, Hao Z, Moberg A, Grab S, del Prieto MR (2008) Documentary evidence as climate proxies. Proxy-specific white paper produced from the PAGES/CLIVAR workshop, Trieste, PAGES (Past Global Changes), Bern. Available at http://www.pages-igbp.org/cgi-bin/WebObjects/products.woa/wa/product?id=331
  104. Pfister C, Garnier E, Alcoforado MJ, Wheeler D, Luterbacher J, Nuňes MF, Taborda JP (2009) “France has never experienced such a disaster!” The meteorological framework and the cultural memory of three severe winter-storms in early eighteenth-century Europe. Clim Change. doi: 10.1007/s10584-009-9784-y Google Scholar
  105. Raicich F (2008) Some features of Trieste climate from an eighteenth century diary (1732–1749). Clim Change 86:211–226Google Scholar
  106. Réthly A (1962–1999) Időjárási események és elemi csapások Magyarországon 1700ig, 1701–1800, 1801–1900 (Weather events and natural extremes in Hungary—4 volumes). Akadémiai Kiadó, BudapestGoogle Scholar
  107. Rodrigo FS, Esteban-Parra MJ, Pozo-Vazquez D, Castro-Diez Y (1999) A 500-year precipitation record in Southern Spain. Int J Climatol 19:1233–1253Google Scholar
  108. Rohr C (2007) Extreme Naturereignisse im Ostalpenraum. Naturerfahrung im Spätmittelalter und am Beginn der Neuzeit. Böhlau, KölnGoogle Scholar
  109. Rutishauser T, Luterbacher J, Jeanneret F, Pfister C, Wanner H (2007) A phenology-based reconstruction of interannual changes in past spring seasons. J Geophys Res 112:G04016Google Scholar
  110. Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2008) Swiss spring plant phenology 2007: extremes, a multi-century perspective and changes in temperature sensitivity. Geophys Res Lett 35:L05703Google Scholar
  111. Shabalova MV, van Engelen AFV (2003) Evaluation of a reconstruction of winter and summer temperatures in the Low Countries, AD 764–1998. Clim Change 58:219–242Google Scholar
  112. Slonosky VC (2002) Wet winters, dry summers? Three centuries of precipitation data from Paris. Geophys Res Lett 29:1-1–1-4Google Scholar
  113. Slonosky VC, Yiou P (2002) Does the NAO index represent zonal flow? The influence of the NAO on North Atlantic surface temperature. Clim Dyn 19:17–30Google Scholar
  114. Slonosky VC, Jones PD, Davies TD (2001) Instrumental pressure observation from the 17th and 18th centuries: London and Paris. Int J Climatol 21:285–298Google Scholar
  115. Štěpánek P, Zahradníček P, Skalák P (2009) Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961–2007. Adv Sci Res 1:1–4Google Scholar
  116. Stone B (2007) Urban and rural temperature trends in proximity to large US cities: 1951–2000. Int J Climatol 27:1801–1807Google Scholar
  117. Tarand A, Nordli PØ (2001) The Tallinn temperature series reconstructed back half a millennium by use of proxy data. Clim Change 48:189–199Google Scholar
  118. Telelis IG (2008) Climatic fluctuations in the Eastern Mediterranean and the Middle East AD 300–1500 from Byzantine documentary and proxy physical palaeoclimatic evidence—a comparison. Jahrb Österr Byz 58:167–207Google Scholar
  119. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79:61–78Google Scholar
  120. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324:78–80Google Scholar
  121. van den Dool HM, Schuurmans CJE, Krijnen HJ (1978) Average winter temperatures at De Bilt (The Netherlands), 1634–1977. Clim Change 1:319–330Google Scholar
  122. van Engelen AFV, Buisman J, IJnsen F (2001) A millennium of weather, winds and water in the Low Countries. In: Jones PD, Ogilvie AEJ, Davies TD, Briffa KR (eds) History and climate: memories of the future? Plenum, New York, pp 101–124Google Scholar
  123. Wales-Smith GB (1971) Monthly and annual totals of rainfall representative of Kew, Surrey, for 1697 to 1970. Meteorol Mag 100:345–362Google Scholar
  124. Wang R, Wang S, Fraedrich K (1991) An approach to reconstruction of temperature on a seasonal basis using historical documents from China. Int J Climatol 11:381–392CrossRefGoogle Scholar
  125. Weikinn C (1958–2002) Quellentexte zur Witterungsgeschichte Europas bis zum Jahre 1850. Hydrographie. Teil 1 (Zeitwende–1500), Teil 2 (1501–1600), Teil 3 (1601–1700), Teil 4 (1701–1750), Teil 5 (1751–1800), Teil 6 (1801–1850). Akademie, BerlinGoogle Scholar
  126. Wheeler D (2006) Archives and climatic change: how old documents offer a key to understanding the world’s weather. Archives 31:119–132Google Scholar
  127. Wheeler D (2009) British ships’ logbooks as a source of historical climatic information. In: Kirchhofer A, Krämer D, Merki CA, Poliwoda G, Stuber M, Summermatter S (eds) Nachhaltige Geschichte. Festschrift für Christian Pfister. Chronos, Zürich, pp 109–126Google Scholar
  128. Wheeler D, Garcia-Herrera R (2009) Ships’ logbooks in climatological research: reflections and prospects. Ann NY Acad Sci 1146:1–15Google Scholar
  129. Wheeler D, Garcia-Herrera R, Wilkinson CW, Ward C (2009) Atmospheric circulation and storminess derived from Royal Navy logbooks: 1685 to 1750. Clim Change. doi: 10.1007/s10584-009-9732-x Google Scholar
  130. Wilson R, Topham J (2004) Violins and climate. Theor Appl Climatol 77:9–24Google Scholar
  131. Wilson R, Tudhope A, Brohan P, Briffa K, Osborn T, Tett S (2006) Two-hundred-fifty years of reconstructed and modeled tropical temperatures. J Geophys Res 111:C10007Google Scholar
  132. Winkler P (2009) Revision and necessary correction of the long-term temperature series of Hohenpeissenberg, 1781–2006. Theor Appl Climatol 98:259–268Google Scholar
  133. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millenium. Geophys Res Lett 32:L15713Google Scholar
  134. Zorita E, Moberg A, Leijonhufvud L, Wilson R, Brázdil R, Dobrovolný P, Luterbacher J, Böhm R, Pfister C, Glaser R, Söderberg J, González-Rouco F (2009) European temperature records of the past five centuries based on documentary information compared to climate simulations. Clim Change (revised)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Rudolf Brázdil
    • 1
  • Petr Dobrovolný
    • 1
  • Jürg Luterbacher
    • 2
  • Anders Moberg
    • 3
  • Christian Pfister
    • 4
  • Dennis Wheeler
    • 5
  • Eduardo Zorita
    • 6
  1. 1.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  2. 2.Department of GeographyJustus-Liebig UniversityGiessenGermany
  3. 3.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  4. 4.Oeschger Center for Climatic Change Research/Institute of HistoryUniversity of BernBern 9Switzerland
  5. 5.Faculty of Applied SciencesUniversity of SunderlandSunderlandUK
  6. 6.GKSS Research CentreGeesthachtGermany

Personalised recommendations