Climatic Change

, Volume 101, Issue 1–2, pp 201–234 | Cite as

Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models

  • J. Luterbacher
  • S. J. Koenig
  • J. Franke
  • G. van der Schrier
  • E. Zorita
  • A. Moberg
  • J. Jacobeit
  • P. M. Della-Marta
  • M. Küttel
  • E. Xoplaki
  • D. Wheeler
  • T. Rutishauser
  • M. Stössel
  • H. Wanner
  • R. Brázdil
  • P. Dobrovolný
  • D. Camuffo
  • C. Bertolin
  • A. van Engelen
  • F. J. Gonzalez-Rouco
  • R. Wilson
  • C. Pfister
  • D. Limanówka
  • Ø. Nordli
  • L. Leijonhufvud
  • J. Söderberg
  • R. Allan
  • M. Barriendos
  • Rüdiger Glaser
  • D. Riemann
  • Z. Hao
  • C. S. Zerefos
Article

Abstract

We use long instrumental temperature series together with available field reconstructions of sea-level pressure (SLP) and three-dimensional climate model simulations to analyze relations between temperature anomalies and atmospheric circulation patterns over much of Europe and the Mediterranean for the late winter/early spring (January–April, JFMA) season. A Canonical Correlation Analysis (CCA) investigates interannual to interdecadal covariability between a new gridded SLP field reconstruction and seven long instrumental temperature series covering the past 250 years. We then present and discuss prominent atmospheric circulation patterns related to anomalous warm and cold JFMA conditions within different European areas spanning the period 1760–2007. Next, using a data assimilation technique, we link gridded SLP data with a climate model (EC-Bilt-Clio) for a better dynamical understanding of the relationship between large scale circulation and European climate. We thus present an alternative approach to reconstruct climate for the pre-instrumental period based on the assimilated model simulations. Furthermore, we present an independent method to extend the dynamic circulation analysis for anomalously cold European JFMA conditions back to the sixteenth century. To this end, we use documentary records that are spatially representative for the long instrumental records and derive, through modern analogs, large-scale SLP, surface temperature and precipitation fields. The skill of the analog method is tested in the virtual world of two three-dimensional climate simulations (ECHO-G and HadCM3). This endeavor offers new possibilities to both constrain climate model into a reconstruction mode (through the assimilation approach) and to better asses documentary data in a quantitative way.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2):1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  2. Auer I, Böhm R, Jurkovic A et al (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46CrossRefGoogle Scholar
  3. Barkmeijer J, Iversen T, Palmer TN (2003) Forcing singular vectors and other sensitive model structures. Q J R Meteorol Soc 129:2401–2423CrossRefGoogle Scholar
  4. Beck C (2000) Zirkulationsdynamische Variabilität im Bereich Nordatlantik-Europa seit 1780. Würzburger Geographische Arbeiten. Mitteilungen der Geographischen Gesellschaft Würzburg, Würzburg, Deutschland, Heft 95, 350 ppGoogle Scholar
  5. Beck C, Jacobeit J, Philipp A (2001) Variability of North-Atlantic-European circulation patterns since 1780 and corresponding variations in Central European climate. In: Brunet India M, López Bonillo D (eds) Detecting and modelling regional climate change. Springer, Berlin, pp 321–331Google Scholar
  6. Beck C, Jacobeit J, Jones PD (2007) Frequency and within-type variations of North-Atlantic European circulation types and their effects on low-frequency climatic variability in Central Europe since 1780. Int J Climatol 27:473–491CrossRefGoogle Scholar
  7. Böhm R, Jones PD, Hiebl J, Brunetti M, Frank D, Maugeri M (2009) The early instrumental warm-bias: a solution for long central European temperatures series 1760–2007. Clim Change. doi:10.1007/s10584-009-9649-4 Google Scholar
  8. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Change 70:363–430CrossRefGoogle Scholar
  9. Brázdil R, Dobrovolný P (2010) Historical climate in central Europe during the last 500 years. In: Przybylak R et al (eds) The polish climate in the European context: an historical overview, pp 41–70. doi:10.1007/978-90-481-3167-9_2
  10. Brázdil R, Dobrovolný P, Luterbacher J, Moberg A, Pfister C, Wheeler D, Zorita E (2009) European climate of the past 500 years: new challenges for historical climatology. Clim Change. doi:10.1007/s10584-009-9783-z Google Scholar
  11. Camuffo D (1987) Freezing of the Venetian Lagoon since the 6th century AD, in comparison to the climate of Western Europe and England. Clim Change 10:43–66CrossRefGoogle Scholar
  12. Camuffo, Jones PD (eds) (2002) Improved understanding of past climatic variability from early daily European instrumental sources. Kluwer Academic, Dordrecht, 392 ppGoogle Scholar
  13. Camuffo D, Bertolin C, Barriendos M, Dominguez-Castro F, Cocheo C, Enzi S, Sghedoni M, della Valle A, Garnier E, Alcoforado M-J, Xoplaki E, Luterbacher J, Diodato N, Maugeri M, Nunes MF, Rodriguez R (2009) 500-year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Clim Change (revised)Google Scholar
  14. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880–2003, their relationship to large scale forcings and predictability. Clim Dyn 29:251–275CrossRefGoogle Scholar
  15. Dobrovolný P, Brázdil R, Valášek H, Kotyza O, Macková J, Halíèková M (2009a) A standard paleoclimatological approach to temperature reconstruction in historical climatology: an example from the Czech Republic, AD 1718–2007. Int J Climatol 29:1478–1492CrossRefGoogle Scholar
  16. Dobrovolný P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson R, van Engelen A, Limanówka D, Kiss A, Halíčková M, Macková J, Riemann D, Luterbacher J, Böhm R (2009b) Monthly and seasonal temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim Change. doi:10.1007/s10584-009-9724-x Google Scholar
  17. Fischer EM, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34:L05707CrossRefGoogle Scholar
  18. Franke J, González Rouco JF, Frank D, Graham NE (2009) 200 years of European temperature variability: insights from and tests of the Proxy Surrogate Reconstruction analog method. Clim Dynam (in review)Google Scholar
  19. Gagen M, McCarrol D, Hicks S (2006) The MILLENNIUM project: European climate of the last MILLENNIUM. PAGES News 14:4Google Scholar
  20. Glaser R, Brázdil R, Pfister C, Dobrovolný P, Barriendos Vallvé M, Bokwa A, Camuffo D, Kotyza O, Limanówka D, Rácz L, Rodrigo FS (1999) Seasonal temperature and precipitation fluctuations in selected parts of Europe during the sixteenth century. Clim Change 43:169–200CrossRefGoogle Scholar
  21. González-Rouco JF, Beltrami H, Zorita E, von Storch H (2006) Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling. Geophys Res Lett 33:L01703CrossRefGoogle Scholar
  22. González-Rouco J, Beltrami H, Zorita E, Stevens M (2009) Borehole climatology: a discussion based on contributions from climate modeling. Clim Past 5:97–127CrossRefGoogle Scholar
  23. Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res (Oceans) 104:23337–23355CrossRefGoogle Scholar
  24. Goosse H, Crespin E, de Montety A, Mann ME, Renssen H, Timmermann A (2009) Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J Geophys Res. doi:10.1029/2009JD012737 Google Scholar
  25. Gouirand I, Moberg A, Zorita E (2007) Climate variability in Scandinavia for the past millennium simulated by an atmosphere-ocean general circulation model. Tellus 59A:30–49Google Scholar
  26. Hellmann G (1883) Repertorium der Deutschen Meteorologie. Leistungen der Deutschen in Schriften, Erfindungen und Beobachtungen auf dem Gebiet der Meteorologie und des Erdmagnetismus von den ältesten Zeiten bis zum Schluss des Jahres 1881. Verlag Wilhelm Engelmann, LeipzigGoogle Scholar
  27. Holopainen J, Helama S, Timonen M (2006) Plant phenological data and tree-rings as paleoclimate indicators in south-west Finland since AD 1750. J Biomet 51:61–72CrossRefGoogle Scholar
  28. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation. Regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  29. Jacobeit J, Beck C, Philipp A (1998) Annual to decadal variability in climate in Europe—objectives and results of the German contribution to the European climate research project ADVICE—Würzburger Geographische Manuskripte 43Google Scholar
  30. Jacobeit J, Wanner H, Koslowski G, Gudd M (1999) European surface pressure patterns for months with outstanding climatic anomalies during the sixteenth century. Clim Change 43:201–221CrossRefGoogle Scholar
  31. Jacobeit J, Jönsson P, Bärring L, Beck C, Ekström M (2001a) Zonal indices for Europe 1780–1995 and running correlations with temperature. Clim Change 48:219–241CrossRefGoogle Scholar
  32. Jacobeit J, Jones PD, Davies T, Beck C (2001b) Circulation changes in Europe since the 1780s. In: Jones PD, Ogilvie A, Davies T, Briffa K (eds) History and climate: memories of the future? Kluwer Academic, Plenum, pp 79–99Google Scholar
  33. Jacobeit J, Wanner H, Luterbacher J, Beck C, Philipp A, Sturm K (2003) Atmospheric circulation variability in the North-Atlantic-European area since the mid-seventeenth century. Clim Dyn 20:341–352Google Scholar
  34. Jacobeit J, Rathmann J, Philipp A, Jones PD (2009) Central European precipitation and temperature extremes in relation to large-scale atmospheric circulation types. Meteorol Z 18:397–410CrossRefGoogle Scholar
  35. Jones PD (2001) Early European instrumental record. In: Jones PD, Ogilvie AEJ, Davies TD, Briffa K (eds) History and climate: memories of the future? Kluwer Academic, New York, pp 55–77Google Scholar
  36. Jones PD, Briffa KR (2006) Unusual climate in northwest Europe during the period 1730 to 1745 based on instrumental and documentary data. Clim Change 79:361–379CrossRefGoogle Scholar
  37. Jones PD et al (1999) Monthly mean pressure reconstruction for Europe 1780–1995. Int J Climatol 19:347–364CrossRefGoogle Scholar
  38. Jones P, Briffa K, Osborn T (2003) Changes in the Northern Hemisphere annual cycle: implications for paleoclimatology? J Geophys Res 108:4588. doi:10.1029/2003JD003695 CrossRefGoogle Scholar
  39. Koenig SJ (2007) Potential of documentary based climate information for the evaluation of European temperature extremes and large scale SLP reconstructions. Master’s thesis, Institute of Geography, University of BernGoogle Scholar
  40. Koslowski G, Glaser R (1999) Variations in reconstructed ice winter severity in the Western Baltic from 1501 to 1995, and their implications for the North Atlantic Oscillation. Clim Change 41:175–191CrossRefGoogle Scholar
  41. Küttel M, Xoplaki E, Gallego D, Luterbacher J, Garcia-Herrera R, Allan R, Barriendos M, Jones PD, Wheeler D, Wanner H (2009) The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750. Clim Dyn. doi:10.1007/s00382-009-0577-9 Google Scholar
  42. Küttel M, Luterbacher J, Wanner H (2010) Multidecadal changes in winter circulation-climate relationship in Europe: frequency variations, within-type modifications, and long-term trends. Clim Dynam. doi:10.1007/s00382-009-0737-y Google Scholar
  43. Labrijn A (1945) Het klimaat van Nederland gedurende de laatste twee en een halve eeuw, publ. MV49 KNMIGoogle Scholar
  44. Leijonhufvud L, Moberg A, Wilson R (2008) Documentary data provide evidence of Stockholm average winter to spring temperatures in the 18th and 19th centuries. Holocene 18:333–343CrossRefGoogle Scholar
  45. Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2009) Five centuries of winter/spring temperatures in Stockholm reconstructed from documentary evidence and instrumental observations. Clim Change. doi:10.1007/s10584-009-9650-y Google Scholar
  46. Limanówka D (1996) Daily weather observations in Cracow in the 16th century. Zeszyty Nauk UJ, Prace Geograficzne 102:503–508Google Scholar
  47. Limanówka D (2000) The transformation of thermal descriptive characteristic in Cracow from 16th century into the quantitative evaluation. Prace Geograficzne 107:113–117Google Scholar
  48. Limanówka D (2001) Rekonstrukcja warunków klimatycznych Krakowa w pierwszej polowie XVI wieku (Reconstruction of climatic conditions in Cracow in the first half of the 16th century). Instytut Meteorologii i Gospodarki Wodnej, WarszawaGoogle Scholar
  49. Livezey RE, Chen W (1983) Statistical field significance and its determination by Monte Carlo Techniques. Mon Weather Rev 111:46–59CrossRefGoogle Scholar
  50. Luterbacher J and 33 co-authors (2000) Monthly mean pressure reconstruction for the late maunder minimum period (AD 1675–1715) based on canonical correlation analysis. Int J Climatol 20:1049–1066CrossRefGoogle Scholar
  51. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  52. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  53. Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) The exceptional European warmth of Autumn 2006 and Winter 2007: historical context, the underlying dynamics and its phenological impacts. Geophys Res Lett 34:L12704CrossRefGoogle Scholar
  54. Luterbacher J, Xoplaki E, Küttel M, Zorita E, González-Rouco JF, Jones PD, Stössel M, Rutishauser T, Wanner H, Wibig J, Przybylak R (2010) Climate change in Poland in the past centuries and its relationship to European climate: Evidence from reconstructions and coupled climate models. In: R. Przybylak et al. (eds) The Polish climate in the European context: An historical overview (pp. 3–39). doi:10.1007/978-90-481-3167-9_1
  55. Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Clim Appl Meteorol 26:1589–1600CrossRefGoogle Scholar
  56. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  57. Moberg A, Bergström H (1997) Homogenization of Swedish temperature data. Part III: the long temperature records from Stockholm and Uppsala. Int J Climatol 17:667–699CrossRefGoogle Scholar
  58. Moberg A, Bergström H, Ruiz Krigsman J, Svanered O (2002) Daily air temperature and pressure series for Stockholm (1756–1998). Clim Change 53:171–212CrossRefGoogle Scholar
  59. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A:348–367Google Scholar
  60. Pauling A, Luterbacher J, Casty C, Wanner H (2006) 500 years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405CrossRefGoogle Scholar
  61. Pfister C, Luterbacher J, Wanner H, Wheeler D, Brázdil R, Ge Q, Hao Z, Moberg A, Grab S, Rosario del Prieto M (2008) Documentary evidence as climate proxies. White paper produced from the PAGES/CLIVAR workshop, Trieste, 2008, http://www.pages-igbp.org/cgi-bin/WebObjects/products.woa/wa/product?id=331
  62. Philipp A, Della Marta PM, Jacobeit J, Fereday D, Jones PM, Moberg A, Wanner H (2007) Long-term variability of daily North-Atlantic–European Pressure Patterns since 1850 classified by Simulated Annealing Clustering. J Climate 20:4065–4095CrossRefGoogle Scholar
  63. Preisendorfer R (1988) Principal component analysis in meteorology and oceanography. Elsevier, AmsterdamGoogle Scholar
  64. Przybylak R, Oliński P, Chorążyczewski W, Nowosad W, Syta K (2010) Documentary evidence. In: R. Przybylak et al. (eds) The polish climate in the European context: an historical overview (pp. 167–190). doi:10.1007/978-90-481-3167-9_6
  65. Rapp J (2000) Konzeption, Problematik und Ergebnisse klimatologischer Trendanalysen für Europa und Deutschland. DWD, OffenbachGoogle Scholar
  66. Rutishauser T, Schleip C, Sparks T, Nordli Ø, Menzel A, Wanner H, Jeanneret F, Luterbacher J (2009) The temperature sensitivity of Swiss and British plant phenology 1753–1958. Clim Res 39:179–190CrossRefGoogle Scholar
  67. Shabalova MV, van Engelen AFV (2003) Evaluation of a reconstruction of winter and summer temperatures in the Low Countries, AD 764–1998. Clim Change 58:219–242CrossRefGoogle Scholar
  68. Shabbar A, Skinner W (2004) Summer drought patterns in Canada and the relationship to global seas surface temperatures. J Climate 17:2866–2880CrossRefGoogle Scholar
  69. Slonosky VC, Jones PD, Davies TD (2001) Atmospheric circulation and surface temperature in Europe from the 18th century to 1995. Int J Climatol 21:63–75CrossRefGoogle Scholar
  70. Tarand A (1992) Meteorological observations in Estonia before 1850 (in Estonian). Folia on science history in Estonia VIII. Tallinn, 30–50Google Scholar
  71. Tarand A (2003) Tallinnas mõõdetud õhutemperatuuri aegrida (in Estonian with English summary). Time series of average monthly and annual air observed air temperature in Tallinn. Publications Instituti Geographici Universitatis Tartuensis 93:24–30Google Scholar
  72. Tarand A, Nordli O (2001) The Tallinn temperature series reconstructed back half a millennium by use of proxy data. Clim Change 48:189–199CrossRefGoogle Scholar
  73. Tett S, Betts R, Crowley T, Gregory J, Johns T, Jones A, Osborn TJ, Öström E, Roberts D, Woodage M (2007) The impact of natural and anthropogenic forcings on climate and hydrology since 1550. Clim Dyn 28:3–34CrossRefGoogle Scholar
  74. Trenberth KE (1990) Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Am Meteorol Soc 71:989–993CrossRefGoogle Scholar
  75. Trepińska J red (1997) Fluctuations of climate in Cracow (1792–1995). Institute of Geography of Jagiellonian University, KrakówGoogle Scholar
  76. Trigo RM, Vaquero JM, Alcoforado MJ, Barriendos M, Taborda J, Garcia-Herrera R, Luterbacher J (2009) Iberia in 1816, the year without summer. Int J Climatol 29:99–115CrossRefGoogle Scholar
  77. van den Dool HM, Krijnen HL, Schuurmans CJE (1978) Average winter temperatures at De Bilt (the Netherlands): 1634–1977. Clim Change 1:319–330CrossRefGoogle Scholar
  78. van Engelen AFV, Nellestijn JW (1996) Monthly, seasonal and annual means of the air temperature in tenths of centigrade in De Bilt. Publ. KNMI, The NetherlandsGoogle Scholar
  79. van Engelen AFV, Geurts HAM (1983–1992) Historische Weerkundige Waarnemingen, I–V, I: Geschiedenis van weerkundige waarnemingen in het bijzonder in Nederland vóór de oprichting van het KNMI, II Vooruitstrevende ideeën over de meteorologie en klimatologie van Petrus van Musschenbroek—1692–1761 IIa: Inleidende tekst bij de meteorologische waarnemingsreeks Utrecht/Leiden 1729–1758, Petrus van Musschenbroek, III: Een rekenmodel dat het verloop van de temperatuur over een etmaal berekent uit drie termijnmetingen van de temperatuur, IV: Nicolaus Cruquius (1678–1754) and his meteorological obeservations, V: Beschrijving antieke meetreeksen, KNMI publ. 165-I, II, IIa, III, IV, V, (De Bilt. 1983–1992)Google Scholar
  80. van Engelen AFV, Buisman J, IJnsen F (2001) A millennium of weather, winds and water in the Low Countries. In: Jones PD et al (ed) History and climate: memories of the future? Kluwer Academic, New York, pp 101–124Google Scholar
  81. van Loon H, Rogers J (1978) The seesaw in winter temperatures between Greenland and Northern Europe. Part I: general description. Mon Weather Rev 106:296–310CrossRefGoogle Scholar
  82. van der Schrier G, Barkmeijer J (2005) Bjerknes’ hypothesis on the coldness during 1790–1820 AD revisited. Clim Dyn 24:355–371CrossRefGoogle Scholar
  83. van der Schrier G, Barkmeijer J (2007) North American 1818–1824 drought and 1825–1840 pluvial and their possible relation to the atmospheric circulation. J Geophys Res 112:D13102CrossRefGoogle Scholar
  84. van der Schrier G, Drijfhout SS, Hazeleger W, Noulin L (2007) Increasing the Atlantic subtropical jet cools the circum-North Atlantic. Meteorol Z 16:675–684CrossRefGoogle Scholar
  85. von Storch H, Zwiers F (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  86. Widmann M, Goosse H, van der Schrier G, Schnur R, Barkmeijer J (2009) Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium. Clim Past Discuss 5:2115–2156CrossRefGoogle Scholar
  87. Wilks DS (1995) Statistical methods in the atmospheric sciences. An introduction. Academic PressGoogle Scholar
  88. Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2003) Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Clim Dyn 20:723–739Google Scholar
  89. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:L15713CrossRefGoogle Scholar
  90. Zerefos CS, Gerogiannis VT, Balis D, Zerefos SC, Kazantzidis A (2007) Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings. Atmos Chem Phys 7:4027–4042CrossRefGoogle Scholar
  91. Zorita E, González-Rouco JF, von Storch H (2007) Comment to “Testing the fidelity of methods used in proxy-based reconstructions of past climate” by Mann et al. J Climate 20:3693–3698CrossRefGoogle Scholar
  92. Zorita E, Moberg A, Leijonhufvud L, Wilson R, Brázdil R, Dobrovolný P, Pfister C, Luterbacher J, Söderberg J, Gonzalez-Rouco JF (2009) European temperature records of the past five centuries based on documentary information compared to climate simulations. Clim Change (revised, this issue)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. Luterbacher
    • 1
  • S. J. Koenig
    • 2
  • J. Franke
    • 3
  • G. van der Schrier
    • 4
  • E. Zorita
    • 5
  • A. Moberg
    • 6
  • J. Jacobeit
    • 7
  • P. M. Della-Marta
    • 8
  • M. Küttel
    • 9
    • 10
  • E. Xoplaki
    • 9
    • 10
    • 11
  • D. Wheeler
    • 12
  • T. Rutishauser
    • 9
    • 10
    • 13
  • M. Stössel
    • 9
  • H. Wanner
    • 9
    • 10
  • R. Brázdil
    • 14
  • P. Dobrovolný
    • 14
  • D. Camuffo
    • 15
  • C. Bertolin
    • 15
  • A. van Engelen
    • 4
  • F. J. Gonzalez-Rouco
    • 16
  • R. Wilson
    • 17
  • C. Pfister
    • 10
  • D. Limanówka
    • 18
  • Ø. Nordli
    • 19
  • L. Leijonhufvud
    • 6
  • J. Söderberg
    • 20
  • R. Allan
    • 21
  • M. Barriendos
    • 22
  • Rüdiger Glaser
    • 23
  • D. Riemann
    • 23
  • Z. Hao
    • 24
  • C. S. Zerefos
    • 25
  1. 1.Department of Geography; Climatology, Climate Dynamics and Climate ChangeJustus-Liebig UniversityGiessenGermany
  2. 2.Department of GeosciencesUniversity of MassachusettsAmherstUSA
  3. 3.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  4. 4.Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands
  5. 5.GKSS Research CentreGeesthachtGermany
  6. 6.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  7. 7.Institute of GeographyUniversity of AugsburgAugsburgGermany
  8. 8.Federal Office of Meteorology and ClimatologyMeteoSwissSwitzerland
  9. 9.Institute of Geography, Climatology and MeteorologyUniversity of BernBernSwitzerland
  10. 10.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  11. 11.The Cyprus InstituteEEWRCNicosiaCyprus
  12. 12.Faculty of Applied SciencesUniversity of SunderlandSunderlandUK
  13. 13.Unitat d’Ecofisiologia CSIC-CREAF (Center for Ecological Applications and Forestry Applications)Universitat Autònoma de BarcelonaBellaterraSpain
  14. 14.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  15. 15.National Research CouncilInstitute of Atmospheric Sciences and ClimatePaduaItaly
  16. 16.Universidad Complutense de MadridMadridSpain
  17. 17.School of Geography and GeosciencesThe University of St AndrewsFifeScotland
  18. 18.Institute of Meteorology and Water ManagementCracowPoland
  19. 19.Norwegian Meteorological InstituteOsloNorway
  20. 20.Department of Economic HistoryStockholm UniversityStockholmSweden
  21. 21.Met Office Hadley CentreHadley CentreExeterUK
  22. 22.Department of Modern HistoryUniversity of BarcelonaBarcelonaSpain
  23. 23.Institute of Physical GeographyUniversity of FreiburgFreiburgGermany
  24. 24.Institute of Geographical Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  25. 25.Biomedical Research FoundationAcademy of AthensAthensGreece

Personalised recommendations