Climatic Change

, Volume 103, Issue 3–4, pp 363–381 | Cite as

Future climate resources for tourism in Europe based on the daily Tourism Climatic Index

  • Sabine L. Perch-Nielsen
  • Bas Amelung
  • Reto Knutti
Article

Abstract

Climate is an important resource for many types of tourism. One of several metrics for the suitability of climate for sightseeing is Mieczkowski’s “Tourism Climatic Index” (TCI), which summarizes and combines seven climate variables. By means of the TCI, we analyse the present climate resources for tourism in Europe and projected changes under future climate change. We use daily data from five regional climate models and compare the reference period 1961–1990 to the A2 scenario in 2071–2100. A comparison of the TCI based on reanalysis data and model simulations for the reference period shows that current regional climate models capture the important climatic patterns. Currently, climate resources are best in Southern Europe and deteriorate with increasing latitude and altitude. With climate change the latitudinal band of favourable climate is projected to shift northward improving climate resources in Northern and Central Europe in most seasons. Southern Europe’s suitability for sightseeing tourism drops strikingly in the summer holiday months but is partially compensated by considerable improvements between October and April.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amelung B (2006) Global (environmental) change and tourism: issues of scale and distribution. Amelung, Maastricht, p 211Google Scholar
  2. Amelung B, Viner D (2006) Mediterranean tourism: exploring the future with the Tourism Climatic Index. J Sustain Tour 14:349–366CrossRefGoogle Scholar
  3. Amelung B, Nicholls S, Viner D (2007) Implications of global climate change for tourism flows and seasonality. J Travel Res 45:285–296CrossRefGoogle Scholar
  4. ASHRAE (1972) ASHRAE handbook of fundamentals American Society of Heating. Refrigeration and Air-Conditioning Engineers, New York, p 688Google Scholar
  5. Besancenot J-P (1990) Climat et tourisme. Masson, Paris, p 223Google Scholar
  6. Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne JL, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes? J Climate 19:3445-3482CrossRefGoogle Scholar
  7. Buonomo E, Jones R, Huntingford C, Hannaford J (2007) On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Q J R Meteorol Soc 133:65-81CrossRefGoogle Scholar
  8. Christensen J, Christensen O (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7-30CrossRefGoogle Scholar
  9. Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. DMI Technical Report 96-4. Available from DMI, Lyngbyvej 100, Copenhagen Ø. Danish Meteorological InstituteGoogle Scholar
  10. Christensen J, Carter T, Rummukainen M, Amanatidis G (2007a) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1-6CrossRefGoogle Scholar
  11. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007b) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  12. de Freitas C (1990) Recreation climate assessment. Int J Climatol 10:89–103CrossRefGoogle Scholar
  13. de Freitas CR (2003) Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeorol 48:45–54CrossRefGoogle Scholar
  14. de Freitas CR, Scott D, McBoyle G (2008) A second generation climate index for tourism (CIT): specification and verification. Int J Biometeorol 52:399–407CrossRefGoogle Scholar
  15. Fronzek S, Carter TR (2007) Assessing uncertainties in climate change impacts on resource potential for Europe based on projections from RCMs and GCMs. Clim Change 81:357–371CrossRefGoogle Scholar
  16. FUR (2007) Erste Ergebnisse der 37. Reiseanalyse 2007. Forschungsgemeinschaft Urlaub und Reisen, Kiel, p 10Google Scholar
  17. Gagge AP, Stolwijk JA, Nishi Y (1971) Effective temperature scale, based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–262Google Scholar
  18. Getz D, Nilsson PA (2004) Responses of family businesses to extreme seasonality in demand: the case of Bornholm, Denmark. Tour Manage 25:17–30CrossRefGoogle Scholar
  19. Giles AR, Perry AH (1998) The use of a temporal analogue to investigate the possible impact of projected global warming on the UK tourist industry. Tour Manage 19:75–80CrossRefGoogle Scholar
  20. Gómez Martín B (2006) Climate potential and tourist demand in Catalonia (Spain) during the summer season. Clim Res 32:75–87CrossRefGoogle Scholar
  21. Hamilton JM, Maddison D, Tol RSJ (2005) Climate change and international tourism: a simulation study. Glob Environ Change 15:253–266CrossRefGoogle Scholar
  22. Hartmann R (1986) Tourism, seasonality and social change. Leis Stud 5:25–33CrossRefGoogle Scholar
  23. Higham J, Hinch T (2002) Tourism, sport and seasons: the challenges and potential of overcoming seasonality in the sport and tourism sectors. Tour Manage 23:175–185CrossRefGoogle Scholar
  24. Iorio JP, Duffy PB, Govindasamy B, Thompson SL, Khairoutdinov M, Randall D (2004) Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States. Clim Dyn 23:243–258CrossRefGoogle Scholar
  25. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  26. Jacob D, Bärring L, Christensen O, Christensen J, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne S, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52CrossRefGoogle Scholar
  27. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  28. Kimoto M, Yasutomi N, Yokoyama C, Emori S (2005) Projected changes in precipitation characteristics near Japan under the global warming. Sci Online Lett Atmos 1:85–88Google Scholar
  29. Lin T-P, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290CrossRefGoogle Scholar
  30. Lundtorp S (2001) Measuring tourism seasonality. In: Baum T, Lundtorp S (eds) Seasonality in Tourism. Pergamon, Amsterdam, pp 23–33CrossRefGoogle Scholar
  31. Meehl GA, Tebaldi C, Nychka D (2004) Changes in frost days in simulations of twentyfirst century climate. Clim Dyn 23:495–511CrossRefGoogle Scholar
  32. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zong-Ci Z (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–845Google Scholar
  33. Mieczkowski Z (1985) The Tourism Climatic Index: a method of evaluating world climate for tourism. Can Geogr 29:220–233CrossRefGoogle Scholar
  34. Moreno A, Amelung B, Santamarta L (2008) Linking beach recreation to weather conditions. A case study in Zandvoort, Netherlands. Tour Mar Environ 5:111–119CrossRefGoogle Scholar
  35. Müller H, Weber F (2007) Klimaänderung und Tourismus: Szenarienanalyse für das Berner Oberland 2030. Forschungsinstitut für Freizeit und Tourismus, Bern, p 88Google Scholar
  36. Murray FW (1967) On the computation of saturation vapor pressure. J Appl Meteorol 6:203–204CrossRefGoogle Scholar
  37. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special Report on Emission Scenarios, Working Group III of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, p 595Google Scholar
  38. Osczevski R, Bluestein M (2005) The new wind chill equivalent temperature chart. Bull Am Meteorol Soc 86:1453–1458CrossRefGoogle Scholar
  39. Perch-Nielsen SL (2009) The vulnerability of beach tourism to climate change - an index approach. Clim Change. doi:10.1007/s10584-009-9692-1 Google Scholar
  40. Räisänen J (2007) How reliable are climate models? Tellus 59A:2–29Google Scholar
  41. Scott D, McBoyle G, Schwartzentruber M (2004) Climate change and the distribution of climatic resources for tourism in North America. Clim Res 27:105–117CrossRefGoogle Scholar
  42. Scott D, Gössling S, de Freitas CR (2008) Preferred climates for tourism: case studies from Canada, New Zealand and Sweden. Clim Res 38:61–73Google Scholar
  43. Siple PA, Passel CF (1945) Measurements of dry atmospheric cooling in subfreezing termperatures. Proc Am Philos Soc 89:177–199Google Scholar
  44. Steadman RG (1984) A universal scale of apparent temperature. J Clim Appl Meteorol 23:1674–1687CrossRefGoogle Scholar
  45. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen P, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  46. Vavrus S, Walsh JE, Chapman WL, Portis D (2006) The behavior of extreme cold air outbreaks under greenhouse warming. Int J Climatol 26:1133–1147CrossRefGoogle Scholar
  47. Vidale PL, Lüthi D, Frei C, Seneviratne SI, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res Atmos 108:4586CrossRefGoogle Scholar
  48. WTTC (2007) World travel & tourism: navigating the path ahead. World Travel & Tourism Council, London, p 36Google Scholar
  49. Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  50. Yacoumis J (1980) Tackling seasonality: the case of Sri Lanka. Int J Tour Manage 1:84–98CrossRefGoogle Scholar
  51. Yorukoglu M, Celik AN (2006) A critical review on the estimation of daily global solar radiation from sunshine duration. Energy Convers Manag 47:2441–2450CrossRefGoogle Scholar

Copyright information

© ETH Zürich 2009

Authors and Affiliations

  • Sabine L. Perch-Nielsen
    • 1
  • Bas Amelung
    • 2
  • Reto Knutti
    • 3
  1. 1.Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental SciencesETH ZurichZurichSwitzerland
  2. 2.International Centre for Integrated assessment and Sustainable development (ICIS)Maastricht UniversityMaastrichtNetherlands
  3. 3.Institute for Atmospheric and Climate Science, Department of Environmental SciencesETH ZurichZurichSwitzerland

Personalised recommendations