Climatic Change

, Volume 99, Issue 1–2, pp 321–329 | Cite as

Emission scenario dependencies in climate change assessments of the hydrological cycle

A letter
  • Hideo Shiogama
  • Naota Hanasaki
  • Yuji Masutomi
  • Tatsuya Nagashima
  • Tomoo Ogura
  • Kiyoshi Takahashi
  • Yasuaki Hijioka
  • Toshihiko Takemura
  • Toru Nozawa
  • Seita Emori
Letter

Abstract

Anthropogenic global warming will lead to changes in the global hydrological cycle. The uncertainty in precipitation sensitivity per 1 K of global warming across coupled atmosphere-ocean general circulation models (AOGCMs) has been actively examined. On the other hand, the uncertainty in precipitation sensitivity in different emission scenarios of greenhouse gases (GHGs) and aerosols has received little attention. Here we show a robust emission-scenario dependency (ESD); smaller global precipitation sensitivities occur in higher GHG and aerosol emission scenarios. Although previous studies have applied this ESD to the multi-AOGCM mean, our surprising finding is that current AOGCMs all have the common ESD in the same direction. Different aerosol emissions lead to this ESD. The implications of the ESD of precipitation sensitivity extend far beyond climate analyses. As we show, the ESD potentially propagates into considerable biases in impact assessments of the hydrological cycle via a widely used technique, so-called pattern scaling. Since pattern scaling is essential to conducting parallel analyses across climate, impact, adaptation and mitigation scenarios in the next report from the Intergovernmental Panel on Climate Change, more attention should be paid to the ESD of precipitation sensitivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10584_2009_9765_MOESM1_ESM.pdf (506 kb)
Emission scenario dependencies in climate change assessments of the hydrological cycle(PDF 506 KB)

References

  1. Allan RP, Soden BJ (2007) Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys Res Lett 34:L18705. doi:10.1029/2007GL031460 CrossRefGoogle Scholar
  2. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232CrossRefGoogle Scholar
  3. Boer GJ (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8:225–239CrossRefGoogle Scholar
  4. Cox P, Stephenson D (2007) A changing climate for prediction. Science 317:207–208CrossRefGoogle Scholar
  5. Hanasaki N et al (2008) An integrated model for the assessment of global water resources – part 1: model description and input meteorological forcing. Hydrol Earth Syst Sci 12:1007–1025Google Scholar
  6. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864CrossRefGoogle Scholar
  7. Hansen J et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi:10.1029/2005JD005776 CrossRefGoogle Scholar
  8. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  9. Hibbard KA, Meehl GA, Cox PM, Friedlingstein P (2007) A strategy for climate change stabilization experiments. EOS 88:217–219CrossRefGoogle Scholar
  10. Hulme M et al (2000) Using a climate scenario generator for vulnerability and adaptation assessments: MAGICC and SCENGEN version 2.4 workbook. Climatic Research UnitGoogle Scholar
  11. Huntingford C, Cox PM (2000) An analogue model to derive additional climate change scenarios from existing GCM simulations. Clim Dyn 16:575–586CrossRefGoogle Scholar
  12. Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J Clim 8:2181–2199CrossRefGoogle Scholar
  13. Lambert FH, Allen MR (2009) Are changes in global precipitation constrained by the tropospheric energy budget? J Clim 22:499–517CrossRefGoogle Scholar
  14. Liepert BG, Previdi M (2009) Do models and observations disagree on the rainfall response to global warming? J Clim 22:3156–3166CrossRefGoogle Scholar
  15. Liepert BG, Feichter J, Lohmann U, Roeckner E (2004) Can aerosols spin down the water cycle in a warmer and moister world? Geophys Res Lett 31:L06207. doi:10.1029/2003GL019060 CrossRefGoogle Scholar
  16. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737CrossRefGoogle Scholar
  17. Meehl GA et al (2007a) Global climate projections. In: Solomon S et al (ed) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 747–845Google Scholar
  18. Meehl GA et al (2007b) THE WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  19. Mitchell TD (2003) Pattern scaling. An examination of the accuracy of the technique for describing future climates. Clim Change 60:217–242CrossRefGoogle Scholar
  20. Mitchell JFB, Johns TC, Eagles M, Ingram WJ, Davis RA (1999) Towards the construction of climate change scenarios. Clim Change 41:547–581CrossRefGoogle Scholar
  21. Moss R et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. http://www.ipcc.ch/meetings/session28/doc8.pdf
  22. Nakicenovic N et al (2000) Special report on emissions scenarios, summary for policy makers. Intergovernmental panel on climate change. IPCC, SwitzerlandGoogle Scholar
  23. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nature Geoscience 1:221–227CrossRefGoogle Scholar
  24. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124CrossRefGoogle Scholar
  25. Richter I, Xie SP (2008) Muted precipitation increase in global warming simulations: a surface evaporation perspective. J Geophys Res 113:D24118. doi:10.1029/2008JD010561 CrossRefGoogle Scholar
  26. Roeckner E et al (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J Clim 12:3004–3032CrossRefGoogle Scholar
  27. Ruosteenoja K, Tuomenvirta H, Jylhä K (2007) GCM-based regional temperature and precipitation change estimates for Europe under four SRES scenarios applying a super-ensemble pattern-scaling method. Clim Change 81:193–208CrossRefGoogle Scholar
  28. Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB (1990) Developing climate scenarios from equilibrium GCM results. Max-Planck-Institut für Meteorologie, Report No 47Google Scholar
  29. Schlesinger ME et al (1997) Geographical scenarios of greenhouse-gas and anthropogenic-sulfate-aerosol induced climate changes. Report of the Climate Research Group, Department of Atmospheric Sciences, University of Illinois at Urbana-ChampaignGoogle Scholar
  30. Sugi M, Yoshimura J (2004) Mechanism of tropical precipitation change due to CO2 increase. J Clim 17:238–243CrossRefGoogle Scholar
  31. Takahashi K, Matsuoka Y, Harasawa H (1998) Impacts of climate change on water resources, crop production and natural ecosystem in the Asia and Pacific region. J Global Environ Eng 4:91–103Google Scholar
  32. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340CrossRefGoogle Scholar
  33. Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring. Science 317:233–235CrossRefGoogle Scholar
  34. Yang F, Kumar A, Schlesinger ME, Wang W (2003) Intensity of hydrological cycles in warmer climates. J Clim 16:2419–2423CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hideo Shiogama
    • 1
  • Naota Hanasaki
    • 1
  • Yuji Masutomi
    • 2
  • Tatsuya Nagashima
    • 1
  • Tomoo Ogura
    • 1
  • Kiyoshi Takahashi
    • 1
  • Yasuaki Hijioka
    • 1
  • Toshihiko Takemura
    • 3
  • Toru Nozawa
    • 1
  • Seita Emori
    • 1
    • 4
    • 5
  1. 1.National Institute for Environmental StudiesTsukubaJapan
  2. 2.Center for Environmental Science in SaitamaSaitamaJapan
  3. 3.Research Institute for Applied MechanicsKyushu UniversityKasugaJapan
  4. 4.Center for Climate System ResearchUniversity of TokyoKashiwaJapan
  5. 5.Yokohama Institute for Earth SciencesJapan Agency for Marine-Earth Science and TechnologyYokohama CityJapan

Personalised recommendations