Climatic Change

, Volume 103, Issue 3–4, pp 399–422 | Cite as

Uncertainty and risk in climate projections for the 21st century: comparing mitigation to non-intervention scenarios

  • Lorenzo Tomassini
  • Reto Knutti
  • Gian-Kasper Plattner
  • Detlef P. van Vuuren
  • Thomas F. Stocker
  • Richard B. Howarth
  • Mark E. Borsuk
Article

Abstract

Probabilistic climate projections based on two SRES scenarios, an IMAGE reference scenario and five IMAGE mitigation scenarios (all of them multi-gas scenarios) using the Bern2.5D climate model are calculated. Probability distributions of climate model parameters that are constrained by observations are employed as input for the climate model. The sensitivity of the resulting distributions with respect to prior assumptions on climate sensitivity is then assessed. Due to system inertia, prior assumptions on climate sensitivity play a minor role in the case of temperature projections for the first half of the 21st century, but these assumptions have a considerable influence on the distributions of the projected temperature increase in the year 2100. Upper and lower probabilities for exceeding 2°C by the year 2100 are calculated for the different scenarios. Only the most stringent mitigation measures lead to low probabilities for exceeding the 2°C threshold. This finding is robust with respect to our prior assumptions on climate sensitivity. Further, probability distributions of total present-value damages over the period 2000–2100 for the different scenarios are calculated assuming a wide range of damage cost functions, and the sensitivity of these distributions with respect to the assumed discount rate is investigated. Absolute values of damage costs depend heavily on the chosen damage cost function and discount rate. Nevertheless, some robust conclusions are possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth ton. Nature 458:1163–1166CrossRefGoogle Scholar
  2. Ammann CM, Meehl GA, Washington WM, Zender CS (2003) A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys Res Lett 30:1657. doi:10.1029/2003GL016875 CrossRefGoogle Scholar
  3. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52:985–992CrossRefGoogle Scholar
  4. Berger J (1984) The robust Bayesian viewpoint. In: Kadane J (ed) Robustness in Bayesian statistics. North-Holland, AmsterdamGoogle Scholar
  5. Berger J (1994) An overview of robust Bayesian analysis. Test 3:5–124CrossRefGoogle Scholar
  6. Camerer C, Weber M (1992) Recent developments in modeling preferences: uncertainty and ambiguity. J Risk Uncertain 5:325–370CrossRefGoogle Scholar
  7. Commission of the European Communities (2007) Limiting global climate change to 2 degrees Celsius. The way ahead for 2020 and beyound. Communication from the commission to the council, the European parliament, the economic and social sommittee and the committee of the regions, BrussselsGoogle Scholar
  8. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  9. den Elzen MGJ, Lucas P (2003) FAIR 2.0—a decision support tool to assess the environmental and economic consequebces of future climate regimes. National Institute of Public Health and the Environment, BilthovenGoogle Scholar
  10. den Elzen MGJ, Meinshausen M, van Vuuren DP (2007) Multi-gas emission envelopes to meet greenhouse gas concentration targets: costs versus certainty of limiting temperature increase. Glob Environ Change 17:260–280CrossRefGoogle Scholar
  11. De Robertis L, Hartigan JA (1981) Bayesian inference using intervals of measures. Ann Statist 9:235–244CrossRefGoogle Scholar
  12. Dessai S, Hulme M (2007) Assessing the robustness of adaptation decisions to climate change uncertainties: a case study on water resources management in the East of England. Glob Environ Change 17:59–72CrossRefGoogle Scholar
  13. Edenhofer O, Carraro C, Koehler J, Grubb M (eds) (2006) Endogenous technological change and the economics of atmospheric stabilization. A special issue of the Energy Journal 27, International Association of Energy EconomicsGoogle Scholar
  14. Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice firn. J Geophys Res 101:4115–4128CrossRefGoogle Scholar
  15. Forest CE, Stone P, Sokolov A (2006) Estimated PDFs of climate system properties including natural and anthropogenic forcings. Geophys Res Lett 33. doi:10.1029/2005GL023977
  16. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon, S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234Google Scholar
  17. Frame DJ, Stone DA, Stott PA, Allen MR (2006) Alternatives to stabilization scenarios. Geophys Res Lett 33:L14707. doi:10.1029/2006GL025801 CrossRefGoogle Scholar
  18. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353CrossRefGoogle Scholar
  19. Furrer R, Knutti R, Sain SR, Nychka D, Meehl GA (2007) Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys Res Lett 34:L06711. doi:10.1029/2006GL027754 CrossRefGoogle Scholar
  20. Gregory JM, Jones CD, Cadule P, Friedlingstein P (2009) Quantifying carbon-cycle feedbacks. J Climate 22:5232–5250CrossRefGoogle Scholar
  21. Hallegatte S (2009) Strategies to adapt to an uncertain climate change. Glob Environ Change 19:240–247CrossRefGoogle Scholar
  22. Haney RL (1971) Surface thermal boundary condition for ocean general circulation models. J Phys Oceanogr 1:241–248CrossRefGoogle Scholar
  23. Harris G, Sexton DMH, Booth BBB, Collins M, Murphy JM, Webb MJ (2006) Frequency distributions of transient regional climate change from perturbed physics ensembles of general circulation model simulations. Clim Dyn 27:357–375CrossRefGoogle Scholar
  24. Heinz Center (2007) A survey of climate change adaptation planning, the H. John Heinz III Center for Science, Economics, and the Environment, Washington, DCGoogle Scholar
  25. Howarth RB (2003) Discounting and uncertainty in climate change policy analysis. Land Econ 79:369–381CrossRefGoogle Scholar
  26. Howarth RB (2005) Against high discount rates. In: Sinnott-Armstrong W, Howarth RB (eds) Perspectives on climate change: science, economics, politics, ethics. Elsevier, AmsterdamGoogle Scholar
  27. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT et al (eds) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  28. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  29. Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, OxfordGoogle Scholar
  30. Jones PD, Moberg A (2003) Hemispheric and large-scale air temperature variations: an extensive revision and an update to 2001. J Climate 16:206–223. See also http://www.met-office.gov.uk/research/hadleycentre/CR_data/Annual/land+sst_web.txt CrossRefGoogle Scholar
  31. Joos F, Plattner GK, Stocker TF, Marchal O, Schmittner A (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284:464–467CrossRefGoogle Scholar
  32. Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner GK, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the IPCC emission scenarios. Glob Biogeochem Cycles 15:891–907CrossRefGoogle Scholar
  33. Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Carbon Dioxide Information Center, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  34. Knutti R, Stocker TF, Wright DG (2000) The effects of subgrid-scale parameterizations in a zonally averaged ocean model. J Phys Oceanogr 30:2738–2752CrossRefGoogle Scholar
  35. Knutti R, Stocker TF, Joos F, Plattner GK (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416:719–723CrossRefGoogle Scholar
  36. Knutti R, Stocker TF, Joos F, Plattner GK (2003) Probabilistic climate change projections using neural networks. Clim Dyn 21:257–272CrossRefGoogle Scholar
  37. Knutti R, Joos F, Müller SA, Plattner GK, Stocker TF (2005) Probabilistic climate change projections for CO2 stabilization profiles. Geophy Res Lett 32:L20707. doi:10.1029/2005GL0232294 CrossRefGoogle Scholar
  38. Knutti R, Allen MR, Friedlingstein P, Gregory JM, Hegerl GC, Meehl GA, Meinshausen M, Murphy JM, Plattner G.-K., Raper SCB, Stocker TF, Stott PA, Teng H, Wigley TML (2008) A review of uncertainties in in global temperature projections over the twenty-first century. J Climate 21:2651–2663CrossRefGoogle Scholar
  39. Knutti R, Tomassini L (2008) Constraints on the transient climate response from observed global temperature and ocean heat uptake. Geophys Res Lett 35:L09701. doi:10.1029/2007GL032904 CrossRefGoogle Scholar
  40. Knutti R, Hegerl G (2008) The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geosci 1:735–743CrossRefGoogle Scholar
  41. Lempert RJ, Schlesinger ME (2000) Robust strategies for abating climate change. Clim Change 45:387–401CrossRefGoogle Scholar
  42. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. See also http://www.nodc.noaa.gov/DATA_ANALYSIS/temp/basin/hc1yr-wO-700m.dat CrossRefGoogle Scholar
  43. Meinshausen M (2005) On the risk of overshooting 2 °C. In: Schellnhuber JS et al (eds) Avoiding dangerous climate change. Cambridge University Press, CambridgeGoogle Scholar
  44. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse emission targets for limiting global warming to 2 °C. Nature 458:1158–1163CrossRefGoogle Scholar
  45. MNP (2006) Integrated modelling of global environmental change. An overview of IMAGE 2.4. In: Bouwman AF, Kram T, Klein Goldewijk K (eds) Netherlands Environmental Assessment Agency Report 500110002/2006, BilthovenGoogle Scholar
  46. Morgan MG, Keith DW (1995) Subjective judgments by climate experts. Environ Sci Technol 29:468–476CrossRefGoogle Scholar
  47. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772CrossRefGoogle Scholar
  48. Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25:2715–2718CrossRefGoogle Scholar
  49. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenham J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios. Working group III, intergovernmental panel on climate change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  50. Nordhaus WD, Boyer J (2000) Warming the world. MIT, CambridgeGoogle Scholar
  51. Nordhaus WD (2007) A review of the Stern review on the economics of climate change. J Econ Lit 45:686–702CrossRefGoogle Scholar
  52. Nordhaus WD (2008) A question of balance: economic modeling of global warming. Yale University Press, New HavenGoogle Scholar
  53. Odling-Smee L (2007) What price a cooler future? Nature 445:582–583Google Scholar
  54. Plattner GK, Joos F, Stocker TF, Marchal O (2001) Feedback mechanism and sensitivities of ocean carbon uptake under global warming. Tellus 53B:564–592Google Scholar
  55. Plattner GK, Knutti R, Joos F, Stocker TF, von Bloh W, Brovkin V, Cameron D, Driesschaert E, Dutkiewicz S, Eby M, Edwards NR, Fichefet T, Hargreaves JC, Jones CD, Loutre MF, Matthews HD, Mouchet A, Mueller SA, Nawrath S, Price A, Sokolov A, Strassmann KM, Weaver AJ (2008) Long-term climate commitments projected with climate—carbon cycle models. J Climate 21:2721–2751CrossRefGoogle Scholar
  56. Schmittner A, Stocker TF (1999) The stability of the thermohaline circulation in global warming experiments. J Climate 12:1117–1133CrossRefGoogle Scholar
  57. Siegenthaler U, Monnin E, Kawamura K, Spahni R, Schwander J, Stauffer B, Stocker TF, Barnola JM, Fischer H (2005) Supporting evidence from EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millenium. Tellus 57B:51–57Google Scholar
  58. Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406CrossRefGoogle Scholar
  59. Stern DI (2005) Global sulfur emissions from 1850 to 2000. Chemosphere 58:163–172CrossRefGoogle Scholar
  60. Stern N (2006) The economics of climate change, the Stern review. Cambridge University Press, CambridgeGoogle Scholar
  61. Stocker TF, Wright DG (1991) A zonally averaged model for the thermohaline circulation. Part II: interocean exchanges in the Pacific-Atlantic basin system. J Phys Oceanogr 21:1725–1739CrossRefGoogle Scholar
  62. Stocker TF, Wright DG, Mysak LA (1992) A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies. J Climate 5:773–797CrossRefGoogle Scholar
  63. Stott PA, Kettleborough JA (2002) Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416:723–726CrossRefGoogle Scholar
  64. Stott PA, Mitchell JFB, Allen MR, Delworth TL, Gregory JM, Meehl GA, Santer BD (2006) Observational constraints on past attributable warming and predictions of future global warming. J Climate 19:3055–3069CrossRefGoogle Scholar
  65. Tebaldi C, Smith RL, Nychka D, Mearns LO (2005) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multi-model ensembles. J Climate 18:1524–1540CrossRefGoogle Scholar
  66. Tomassini L, Reichert P, Knutti R, Stocker TF, Borsuk ME (2007) Robust Bayesian uncertainty analysis of climate system properties using Markov chain Monte Carlo methods. J Climate 20:1239–1254CrossRefGoogle Scholar
  67. van Vuuren DP (2007) Energy systems and climate policy: long-term scenarios for an uncertain future. Dissertation, Utrecht University, UtrechtGoogle Scholar
  68. van Vuuren DP, Eickhout B, Lucas PL, den Elzen MGJ (2006) Long-term multi-gas scenarios to stabilise radiative forcing—exploring costs and benefits within an integrated assessment framework. Energy J 3:201–234 (special issue)Google Scholar
  69. van Vuuren DP, den Elzen MGJ, Lucas P, Eickhout BE, Strengers BJ, van Ruijven V, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159CrossRefGoogle Scholar
  70. Wang YM, Lean JL, Sheeley NL Jr (2005) Modeling the sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538CrossRefGoogle Scholar
  71. Warren R, Hope C, Mastrandrea M, Tol R, Adger N, Lorenzoni I (2006) Spotlighting impacts functions in integrated assessment, research report prepared for the Stern review on the economics of climate change. Tyndall Centre for Climate Change Research, Working Paper 91Google Scholar
  72. Wasserman L, Kadane JB (1992) Computing bounds on expectations. J Am Stat Assoc 87:516–522CrossRefGoogle Scholar
  73. Webster M (2003) Communicating climate change uncertainty to policy-makers and the public. Clim Change 61:1–8CrossRefGoogle Scholar
  74. Weitzman ML (2001) Gamma discounting. Am Econ Rev 91:261–271CrossRefGoogle Scholar
  75. Weitzman ML (2009) On modeling and interpreting the economics of catastrophic climate change. Rev Econ Stat 91:1–19CrossRefGoogle Scholar
  76. Weyant JP, de la Chesnaye FC, Blanford GJ (2006) An overview of EMF-21: multigas mitigation and climate change. Energy J (special issue 3)Google Scholar
  77. Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293:451–454CrossRefGoogle Scholar
  78. Wright DG, Stocker TF (1991) A zonally averaged ocean model for the thermohaline circulation, Part I: model development and flow dynamics. J Phys Oceanogr 21:1713–1724CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Lorenzo Tomassini
    • 1
    • 2
    • 3
  • Reto Knutti
    • 4
  • Gian-Kasper Plattner
    • 2
    • 5
  • Detlef P. van Vuuren
    • 6
  • Thomas F. Stocker
    • 5
  • Richard B. Howarth
    • 7
  • Mark E. Borsuk
    • 8
  1. 1.Swiss Federal Institute of Aquatic Science and TechnologyDuebendorfSwitzerland
  2. 2.Environmental Physics, Institute of Biogeochemistry and Pollutant DynamicsETH ZurichZurichSwitzerland
  3. 3.Max Planck Institute for MeteorologyHamburgGermany
  4. 4.Institute of Atmospheric and Climate ScienceETH ZurichZurichSwitzerland
  5. 5.Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland
  6. 6.Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  7. 7.Environmental Studies ProgramDartmouth CollegeHanoverUSA
  8. 8.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations