Climatic Change

, Volume 98, Issue 3–4, pp 379–403 | Cite as

Downscaling extreme month-long anomalies in southern South America

  • C. G. Menéndez
  • M. de Castro
  • J.-P. Boulanger
  • A. D’Onofrio
  • E. Sanchez
  • A. A. Sörensson
  • J. Blazquez
  • A. Elizalde
  • D. Jacob
  • H. Le Treut
  • Z. X. Li
  • M. N. Núñez
  • N. Pessacg
  • S. Pfeiffer
  • M. Rojas
  • A. Rolla
  • P. Samuelsson
  • S. A. Solman
  • C. Teichmann
Open Access
Article

Abstract

We investigate the performance of one stretched-grid atmospheric global model, five different regional climate models and a statistical downscaling technique in simulating 3 months (January 1971, November 1986, July 1996) characterized by anomalous climate conditions in the southern La Plata Basin. Models were driven by reanalysis (ERA-40). The analysis has emphasized on the simulation of the precipitation over land and has provided a quantification of the biases of and scatter between the different regional simulations. Most but not all dynamical models underpredict precipitation amounts in south eastern South America during the three periods. Results suggest that models have regime dependence, performing better for some conditions than others. The models’ ensemble and the statistical technique succeed in reproducing the overall observed frequency of daily precipitation for all periods. But most models tend to underestimate the frequency of dry days and overestimate the amount of light rainfall days. The number of events with strong or heavy precipitation tends to be under simulated by the models.

References

  1. Barrucand M, Rusticucci M (2001) Climatología de temperaturas extremas en la Argentina. Variabilidad temporal y regional. Meteorológica 26:85–102Google Scholar
  2. Bettolli M, Penalba O, Vargas W (2005) Características de la precipitación diaria en la región sojera Argentina. In: Proceedings of the IX congreso Argentino de meteorología, Buenos AiresGoogle Scholar
  3. Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA-COARE data. J Atmos Sci 58(21):3158–3183CrossRefGoogle Scholar
  4. Boulanger J-P, Lafon F, Penalba O, Rusticucci M, Vargas W (2005) Low-frequency modes of observed precipitation variability over the La Plata basin. Clim Dyn 24:393–413. doi:10.1007/s00382-004-0514-x CrossRefGoogle Scholar
  5. Castro M, Fernandez C, Gaertner MA (1993) Description of a meso-scale atmospheric numerical model. In: Diaz JI, Lions JL (eds) Mathematics, climate and environment, Masson (ISBN: 2-225-84297-3), p 273Google Scholar
  6. Champeaux JL, Masson V, Chauvin F (2005) ECOCLIMAP: a global database of land surface parameters at 1 km resolution. Meteorol Appl 12:29–32CrossRefGoogle Scholar
  7. Chen F, Dudhia J (2001) Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  8. Christensen OB (1999) Relaxation of soil variables in a regional climate model. Tellus A 51:674–685CrossRefGoogle Scholar
  9. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Rueda VM, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  10. Cosgrove BA et al (2003) Land surface model spin up behavior in the North American land data assimilation system (NLDAS). J Geophys Res 108:8845. doi:10.1029/2002JD003316 CrossRefGoogle Scholar
  11. Diaz A, Aceituno P (2003) Atmospheric circulation anomalies during episodes of enhanced and reduced convective cloudiness over Uruguay. J Clim 16:3171–3185CrossRefGoogle Scholar
  12. D’Onofrio A, Boulanger J-P, Segura EC (2009) A weather pattern classification system for regional climate downscaling of daily precipitation and temperature. Clim Change. doi:10.1007/s10584-009-9738-4 Google Scholar
  13. Ducoudre N, Laval K, Perrier A (1993) SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model. J Clim 6:248–273CrossRefGoogle Scholar
  14. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  15. Dümenil L, Todini E (1992) A rainfall–runoff scheme for use in the Hamburg climate model. In: O’Kane JP (ed) Advances in theoretical hydrology, EGS series of hydrological sciences 1. Elsevier, Amsterdam, pp 129–157Google Scholar
  16. Emanuel KA (1993) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  17. Fuenzalida H (2007) Climate change simulations with PRECIS over Chile. Presentation at the CLARIS final meeting, La Plata, Argentina, June 2007Google Scholar
  18. Garand L (1983) Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region. J Atmos Sci 40:230–244CrossRefGoogle Scholar
  19. Giorgetta M, Wild M (1995) The water vapour continuum and its representation in ECHAM4, Max Planck institut fuer meteorologie report, vol 162, p 38Google Scholar
  20. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352CrossRefGoogle Scholar
  21. Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:1693. doi:10.1029/2002GL01531 CrossRefGoogle Scholar
  22. Hoskins BJ, Hodges KI (2005) New perspectives on the Southern Hemisphere winter storm tracks. J Clim 18:4108–4129CrossRefGoogle Scholar
  23. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, LeVan P, Li Z-X, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813CrossRefGoogle Scholar
  24. Hsie EY, Anthes RA, Keyser D (1984) Numerical simulation of frontogenesis in a moist atmosphere. J Atmos Sci 41:2581–2594CrossRefGoogle Scholar
  25. Jacob D (2001) A note on the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Met Atmos Phys 77:61–73CrossRefGoogle Scholar
  26. Jones CG, Sanchez E (2002) The representation of shallow cumulus convection and associated cloud fields in the Rossby Centre Atmospheric Model. HIRLAM newsletter 41, SMHI, SE-60176 Norrköping, Sweden, pp 91–106Google Scholar
  27. Kain J, Fritsch J (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: Emanuell KA, Raymond DJ (eds) The representation of cumulus convection in numerical models. American Meteorological Society, Boston, pp 165–170Google Scholar
  28. Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). Reports Meteorology and Climatology No 108, SMHI, SE-60176 Norrköping, Sweden, 54 ppGoogle Scholar
  29. Kodama YM (1993) Large-scale common features of the subtropical convergence zones (the Baiu frontal zone, the SPZ, and the SACZ). Part II: conditions of the circulations for generating the STCZs. J Meteorol Soc Japan 71:581–610Google Scholar
  30. Krinner G, Viovy N, de-Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice C (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Chang Biol 19:1015–1048Google Scholar
  31. Leung LR, Mearns LO, Giorgi F, Wilby RL (2003) Regional climate research needs and opportunities. Bull Am Meteorol Soc 84:89–95CrossRefGoogle Scholar
  32. Liebmann B, Kiladis GN, Vera CS, Saulo AC, Carvalho LMV (2004) Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J Clim 17:3829–3842CrossRefGoogle Scholar
  33. Marengo JA (2007) Integrating across spatial and temporal scales in climate projections: challenges for using RCM projections to develop plausible scenarios for future extreme events in South America for vulnerability and impact studies. In: Meeting report (papers) of the IPCC TGICA regional expert meeting, Nadi, Fiji, 20–22 June 2007Google Scholar
  34. Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. J Clim 17:2261–2280CrossRefGoogle Scholar
  35. Menéndez CG, Cabré MF, Nuñez MN (2004) Interannual and diurnal variability of January precipitation over subtropical South America simulated by a regional climate model. CLIVAR Exchanges 29:1–3Google Scholar
  36. Menéndez CG, Sörensson AA, Samuelsson P, Willén U, Hansson U (2007) Simulating soil-precipitation feedbacks in South America. In: Meeting report (papers) of the IPCC TGICA regional expert meeting, Nadi, Fiji, 20–22 June 2007Google Scholar
  37. Misra V, Dirmeyer PA, Kirtman BP (2003) Dynamic downscaling of seasonal simulations over South America. J Clim 16:103–117CrossRefGoogle Scholar
  38. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SJ (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102D:16663–16682CrossRefGoogle Scholar
  39. Morcrette J-J (1991) Radiation and cloud radiative properties in the ECMWF operational weather forecast model. J Geophys Res 96D:9121–9132CrossRefGoogle Scholar
  40. Morcrette J-J, Smith L, Fourquart Y (1986) Pressure and temperature dependance of the absorption in longwave radiation parameterizations. Beitr Phys Atmos 59:455–469Google Scholar
  41. Nesbitt SW, Zipser EJ (2003) The diurnal cycle of rainfall and convective intensity to three years of TRMM measurements. J Clim 16:1456–1475Google Scholar
  42. New M, Hulme M, Jones P (1999) Representing twentieth-century space time climate variability. Part I. development of a 1961–1990 mean monthly terrestrial climatology. J Clim 12:829–856CrossRefGoogle Scholar
  43. New M, Hulme M, Jones P (2000) Representing twentieth-century space time climate variability. Part II: development of 1901–1996 monthly grids of terrestrial surface climate. J Clim 13:2217–2238CrossRefGoogle Scholar
  44. Nogués-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125:279–291CrossRefGoogle Scholar
  45. Nordeng TE (1994) Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Research Department, Technical memorandum no 206, October 1994. European Centre for Medium Range Weather Forecasts, Reading, UK, pp 41Google Scholar
  46. Núñez M, Solman S, Cabré M (2006) Mean climate and annual cycle in a regional climate change experiment over Southern South America. II: climate change scenarios (2081–2090). In: Proceedings of 8 ICSHMO, 24–28 April 2006. Foz do Iguacu, Brazil, pp 325–331Google Scholar
  47. Paegle J, Ambrizzi T, Berbery H, Campetella C, Garreaud R, Herdies D, Marengo J, Menéndez CG, Nicolini M, Porfirio da Rocha R, Ruiz J, Saulo CS, Seluchi M, Silva Dias PL (2004) Modeling studies related to SALLJEX. CLIVAR Exchanges 29:9–11Google Scholar
  48. Räisänen P, Rummukainen M, Räisänen J (2000) Modification of the HIRLAM radiation scheme for use in the Rossby Centre regional atmospheric climate model. Department of Meteorology, Report No 49, University of Helsinki, pp 71Google Scholar
  49. Rasch PJ, Kristjánsson JE (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Clim 11:1587–1614CrossRefGoogle Scholar
  50. Rauscher SA, Seth A, Qian J-H, Camargo SJ (2006) Domain choice in an experimental nested modeling prediction system for South America. Theor Appl Climatol 86:229–246. doi:10.1007/s00704-006-0206-z CrossRefGoogle Scholar
  51. Rauscher SA, Seth A, Liebmann B, Qian J-H, Camargo SJ (2007) Regional climate model—simulated timing and character of seasonal rains in South America. Mon Weather Rev 135:2642–2657CrossRefGoogle Scholar
  52. Rodell M, Houser PR, Berg AA, Famiglietti JS (2005) Evaluation of 10 methods for initializing a land surface model. J Hydrometeorol 6:146–155CrossRefGoogle Scholar
  53. Samuelsson P, Gollvik S, Ullerstig A (2006) The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). Report in meteorology 122, SMHI SE-601 76. Norrköping, SwedenGoogle Scholar
  54. Sass BH, Rontu L, Savijärvi H, Räisänen P (1994) HIRLAM-2 Radiation scheme: documentation and tests. Hirlam technical report no 16, SMHI. SE-601 76 Norrköping, Sweden, 43 ppGoogle Scholar
  55. Savijärvi H (1990) A fast radiation scheme for mesoscale model and short-range forecast models. J Appl Met 29:437–447CrossRefGoogle Scholar
  56. Seluchi ME, Marengo JA (2000) Tropical-midlatitude exchange of air masses during summer and winter in South America: climatic aspects and examples of intense events. Int J Climatol 20:1167–1190CrossRefGoogle Scholar
  57. Seth A, Rauscher SA, Camargo SJ, Qian J-H, Pal JS (2007) RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Clim Dyn 28:461–480. doi:10.1007/s00382-006-0191-z CrossRefGoogle Scholar
  58. Silva VBS, Berbery EH (2006) Intense rainfall events affecting the La Plata basin. J Hydrometeorol 7:769–787CrossRefGoogle Scholar
  59. Solman S, Nuñez M, Cabré MF (2007) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30:533–552. doi:10.1007/s00382-007-0304-3 CrossRefGoogle Scholar
  60. Sörensson AA, Menéndez CG, Hansson U, Samuelsson P, Willén U (2007) Present and future climate as simulated by Rossby Centre regional atmosphere model (RCA3) forced by ECHAM5-OM over South America. Presentation at the CLARIS final meeting, La Plata, Argentina, June 2007Google Scholar
  61. Stephens GL (1978) Radiation profiles in extended water clouds: II. Parameterization schemes. J Atmos Sci 35:2123–2132CrossRefGoogle Scholar
  62. Sundquist H (1978) A parameterization scheme for non-convective condensation including precipitation including prediction of cloud water content. Quart J R Met Soc 104:677–690CrossRefGoogle Scholar
  63. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  64. Uppala SM et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  65. Velasco I, Fritsch JM (1987) Mesoscale convective complexes in the Americas. J Geophys Res 92(D8):9591–9613CrossRefGoogle Scholar
  66. Vernekar AD, Kirtman BP, Fennessy MJ (2003) Low-level jets and their effects on the South American summer climate as simulated by the NCEP ETA model. J Clim 16:297–311CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • C. G. Menéndez
    • 1
    • 5
  • M. de Castro
    • 2
  • J.-P. Boulanger
    • 3
  • A. D’Onofrio
    • 4
  • E. Sanchez
    • 2
  • A. A. Sörensson
    • 1
  • J. Blazquez
    • 1
  • A. Elizalde
    • 2
    • 6
  • D. Jacob
    • 6
  • H. Le Treut
    • 7
  • Z. X. Li
    • 7
  • M. N. Núñez
    • 1
  • N. Pessacg
    • 1
  • S. Pfeiffer
    • 6
  • M. Rojas
    • 8
  • A. Rolla
    • 1
  • P. Samuelsson
    • 9
  • S. A. Solman
    • 1
    • 5
  • C. Teichmann
    • 6
  1. 1.Centro de Investigaciones del Mar y la AtmósferaCONICET-UBABuenos AiresArgentina
  2. 2.Facultad de Ciencias del Medio AmbienteUniversidad de Castilla-La ManchaToledoSpain
  3. 3.Laboratoire d’Océanographie et du ClimatUMR CNRS/IRD/UPMCParisFrance
  4. 4.DC, FCENUniversidad de Buenos AiresBuenos AiresArgentina
  5. 5.DCAO, FCENUniversidad de Buenos AiresBuenos AiresArgentina
  6. 6.Max Planck Institute for MeteorologyHamburgGermany
  7. 7.Laboratoire de Météorologie DynamiqueCNRSParisFrance
  8. 8.Departamento de GeofísicaUniversidad de ChileSantiagoChile
  9. 9.Rossby CentreSMHINorrköpingSweden

Personalised recommendations