Climatic Change

, Volume 100, Issue 3–4, pp 645–666

Relationship between climate change and vegetation distribution in the Mediterranean mountains: Manzanares Head valley, Sierra De Guadarrama (Central Spain)

  • Arturo García-Romero
  • Julio Muñoz
  • Nuria Andrés
  • David Palacios
Article

Abstract

This work analyzes the consequences of climate change in the distribution of the Mediterranean high-mountain vegetation. A study area was chosen at the Sierra de Guadarrama, in the center of the Iberian Peninsula (1,795 to 2,374 m asl). Climate change was analyzed from the record of 18 variables regarding temperature, rainfall and snowfall over the period 1951–2000. The permanence of snow cover (1996–2004), landforms stability and vegetation distribution in 5 years (1956, 1972, 1984, 1991 and 1998) were all analyzed. The Nival Correlation Level of the different vegetation classes was determined through their spatial and/or temporal relationship with several climatologic variables, snow cover duration and landforms. In order to quantify trends and major change processes, areas and percent changes were calculated, as well as Mean Annual Transformation Indices and Transition Matrices. The findings reveal that in the first part of the study period (up to the first half of the 1970s) the temperature rise in the mid-winter months caused the reduction of some classes of nival vegetation, while others expanded, favored by high rainfall, decrease in both maximum temperatures and summer aridity, and longer snow cover duration. The second part of the study period was characterized by the consolidation of the increase in all thermal variables, along with an important reduction in rainfall volume and snow cover duration. As a result, herbaceous plants, which are highly correlated with a long snow permanence and abundance of melting water, have been replaced by leguminous shrubs which grow away from the influence of snow, and which are steadily becoming denser.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcón S, Martínez-Martínez MT, Martínez-Molina I (1984) Climatología de Puerto de Navacerrada. Instituto Nacional de Meteorología, MadridGoogle Scholar
  2. Andrés N, Palacios D (2004) Interrelación nieve/geomorfología en la sierra de Guadarrama: altas cuencas del ventisquero de La Condesa y Valdemartín. Cuad Invest Geogr 30:85–116Google Scholar
  3. Ballantyne CK (1985) Nivation landforms and snow patch erosion on two massifs in the Northern Highlands of Scotland. Scott Geogr Mag 101:40–49Google Scholar
  4. Beniston M (2003) Climatologic change in mountain regions: a review of possible impacts. Clim Change 59(31):5–31CrossRefGoogle Scholar
  5. Bertrand G (1966) Por une étude géographique de la végétation. Revue Géograph des Pyrénées et du Sud-Ouest 38(2):129–144Google Scholar
  6. Billings WD, Bliss LC (1959) An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40:388–397CrossRefGoogle Scholar
  7. Christiansen HH (1996) Nivation forms, processes and sediments in recent and former periglacial areas. Geograph Hafniensia. A4, CopenhagenGoogle Scholar
  8. Christiansen HH (1998) Nivation forms and processes in unconsolidated sediments in Greenland. Earth Surf Process Landf 23:751–760CrossRefGoogle Scholar
  9. Corella P (1988) El comercio de la nieve y del hielo en la provincia de Madrid. In: Establecimientos tradicionales madrileños, vol VIII. Periferia de Madrid y pueblos de la Comunidad. Cámara de Comercio e Industria, MadridGoogle Scholar
  10. Daly C (1984) Snow distribution patterns in the alpine Krummholz zone. Progr Phys Geogr 8(2):157–173CrossRefGoogle Scholar
  11. Del Río S, Penas A (2006) Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatologic variations. Plant Ecol 185:269–282CrossRefGoogle Scholar
  12. Evans BM, Walker DA, Benson CS et al (1989) Spatial interrelationships between terrain, snow distribution and vegetation patterns at an artic foothills site in Alaska. Holarct Ecol 12:270–278Google Scholar
  13. Fagre DB, Peterson DL, Hessl AE (2003) Taking the pulse of mountains: ecosystems responses to climatologic variability. Clim Change 59:263–282CrossRefGoogle Scholar
  14. Fernández-González F (1991) La vegetación del valle del Paular (Sierra de Guadarrama, Madrid). Lazaroa 12:153–272Google Scholar
  15. Forman R (1995) Land mosaics. The ecology of landscapes and regions. Cambridge University Press, New YorkGoogle Scholar
  16. García-Romero A, Oropesa O, Galicia L (2005) Land-use systems and resilience of tropical rainforest in the Tehuantepec Isthmus, Mexico. Environ Manag 34(6):768–785CrossRefGoogle Scholar
  17. Gavilán R, Fernández-González F, Blasic C (1998) Climatologic classification and ordination of the Spanish Sistema Central: relationships with potential vegetation. Plant Ecol 139:1–11CrossRefGoogle Scholar
  18. Instituto Nacional de Meteorología (1995) Valores normales y estadísticos de estaciones principales (1961–1990). Observatorio de Madrid Puerto de Nacavacerrada. INM, MadridGoogle Scholar
  19. Instituto Nacional de Meteorología (2002) Observatorio Meteorológico de Madrid Puerto de Navacerrada. Valores normales y estadísticos de los observatorios meteorológicos principales (1971–2000), vol 4. Madrid, Castilla La Mancha y Extremadura. INM, MadridGoogle Scholar
  20. Keller F, Kienast F, Beniston M (2000) Evidence of response of vegetation to environment change on high-elevation sites in the Swiss Alps. Reg Environ Change 1(2):70–77CrossRefGoogle Scholar
  21. Körner C (1999) Alpine plant life. Springer, BerlinGoogle Scholar
  22. Lambin EF, Turner BL, Geist HJ et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Global Environ Change 11:261–269CrossRefGoogle Scholar
  23. Mas R (1998) El territorio. Madrid y la Sierra de Guadarrama. Museo Municipal, MadridGoogle Scholar
  24. Muñoz J (1998) Paisaje y geosistema. Una aproximación desde la Geografía Física. Paisaje y medio ambiente. Universidad de Valladolid-Fundación Duques de Soria, SoriaGoogle Scholar
  25. Nascimento JR (1991) Discutindo numeros do desmatamento. Interciencia 16(5):232–239Google Scholar
  26. Nyberg R (1991) Geomorphic processes at snow patch sites in the Abisko Mountains, northern Sweden. Z Geomorph NF 35(3):321–343Google Scholar
  27. Palacios D, García M (1997a) The influence of nival erosion on the distribution of high mountain vegetation to snow cover: Peñalara, Spain. Catena 30:1–40CrossRefGoogle Scholar
  28. Palacios D, García M (1997b) The influence of geomorphologic heritage on present nival erosion: Peñalara, Spain. Geogr Ann 79/A(1–2):25–40Google Scholar
  29. Palacios D, Andrés N, Luengo E (2003) Distribution and effectiveness of nivation in Mediterranean mountains: Peñalara (Spain). Geomorphology 54:157–178CrossRefGoogle Scholar
  30. Pauli H, Gottfried M, Grabherr G (2003) Effects of climate change on the alpine and nival vegetation of the Alps. J Mount Ecol 7(suppl.):9–12Google Scholar
  31. Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biol 8:531–544CrossRefGoogle Scholar
  32. Ramírez I (2001) Cambios en las cubiertas del suelo en la Sierra de Angangueo, Michoacán y Estado de México, 1971–1994–2000. Investig Geogr 45:39–55Google Scholar
  33. Rapp A (1960) Recent development of mountain slopes in Kärkevagge and surroundings, north Scandinavia. Geogr Ann 42:65–200CrossRefGoogle Scholar
  34. Rivas-Martínez S, Belmonte D, Cantó P, Fernández-González F, Fuente V, Moreno JM, Sánchez-Mata D, García-Sancho L (1987) Piornales, enebrales y pinares oromediterráneos (Pino-Cytision oromediterranei) en el Sistema Central. Lazaroa 7:13–124Google Scholar
  35. Rivas-Martínez S, Cantó P, Fernández-González F, Navarro C, Sánchez-Mata D (1989) Sinopsis de la vegetación saxícola del sistema central. Facultad de Farmacia-UCM, MadridGoogle Scholar
  36. Rivas-Martínez S, Cantó P, Fernández-González F, Molina JA, Pizarro JM, Sánchez-Mata D (1999) Synopsis of the Sierra de Guadarrama vegetation. It Geobot 13:189–206Google Scholar
  37. Sanz C (1979) El mosaico de geofacies supraforestales en la zona más elevada de la Sierra de Guadarrama. VI coloquio de geografía, Asociación de Geógrafos Españoles, Palma de MallorcaGoogle Scholar
  38. Sanz-Elorza M, Dana ED, González A, Sobrino E (2003) Changes in high-mountain vegetation of the Central Iberian Peninsula as a probable sign of Global warming. Ann Bot 92:273–280CrossRefGoogle Scholar
  39. Servicio Meteorológico Nacional (1976) Relación de valores normales correspondientes a observatorios principales con datos del período 1931–60. SMN, MadridGoogle Scholar
  40. UGSD (2001) ILWIS 3.0 academic user’s guide. Aerospace Survey and Earth Sciences (ITC), EnschedeGoogle Scholar
  41. Valenzuela M (1977) Urbanización y crisis rural en la Sierra de Madrid, Madrid. Instituto de Estudios de Administración Local, MadridGoogle Scholar
  42. Walker DA, Halfpenny JC, Walker MD, Wessman CA (1993) Long-term studies of snow-vegetation interactions. BioSci 43(5):287–301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Arturo García-Romero
    • 1
  • Julio Muñoz
    • 2
  • Nuria Andrés
    • 2
  • David Palacios
    • 2
  1. 1.Departamento de Geografía Física, Instituto de GeografíaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Geografía e HistoriaUniversidad Complutense de MadridMadridSpain

Personalised recommendations