Climatic Change

, Volume 101, Issue 1–2, pp 69–107 | Cite as

Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500

  • Petr DobrovolnýEmail author
  • Anders Moberg
  • Rudolf Brázdil
  • Christian Pfister
  • Rüdiger Glaser
  • Rob Wilson
  • Aryan van Engelen
  • Danuta Limanówka
  • Andrea Kiss
  • Monika Halíčková
  • Jarmila Macková
  • Dirk Riemann
  • Jürg Luterbacher
  • Reinhard Böhm


Monthly temperature series for Central Europe back to AD 1500 are developed from documentary index series from Germany, Switzerland and the Czech Republic (1500–1854) and 11 instrumental temperature records (1760–2007). Documentary evidence from the Low Countries, the Carpathian Basin and Poland are used for cross-checking for earlier centuries. The instrumental station records are corrected for inhomogeneities, including insufficient radiation protection of early thermometers and the urban heat island effect. For overlapping period (1760–1854), the documentary data series correlate with instrumental temperatures, most strongly in winter (86% explained variance in January) and least in autumn (56% in September). For annual average temperatures, 81% of the variance is explained. Verification statistics indicate high reconstruction skill for most months and seasons. The last 20 years (since 1988) stand out as very likely the warmest 20-year period, accounting for the calibration uncertainty and decreases in proxy data quality before the calibration period. The new reconstruction displays a previously unobserved long-term decrease in DJF, MAM and JJA temperature variability over last five centuries. Compiled monthly, seasonal and annual series can be used to improve the robustness of gridded large-scale European temperature reconstructions and possible impact studies. Further improvement of the reconstruction would be achieved if documentary data from other European countries are further developed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675. doi: 10.1002/joc.3370060607 CrossRefGoogle Scholar
  2. Alexandersson H, Eriksson B (1989) Climate fluctuations in Sweden 1860–1987. SMHI reports meteorology and climatology 58. SMHI, NorrköpingGoogle Scholar
  3. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin JM, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27(1):17–46. doi: 10.1002/joc.1377 CrossRefGoogle Scholar
  4. Balling RC, Vose RS, Weber GR (1998) Analysis of long-term European temperature records: 1751–1995. Clim Res 10(3):193–200. doi: 10.3354/cr010193 CrossRefGoogle Scholar
  5. Bartholy J, Pongrácz R, Molnár Z (2004) Classification and analysis of past climate information based on historical documentary sources for the Carpathian basin. Int J Climatol 24(14):1759–1776. doi: 10.1002/joc.1106 CrossRefGoogle Scholar
  6. Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25(15):65–80. doi: 10.1002/joc.1118 CrossRefGoogle Scholar
  7. Böhm R, Jones PD, Hiebl J, Brunetti M, Frank D, Maugeri M (2009) The early instrumental warm-bias: a solution for long central European temperatures series 1760–2007. Clim Change. doi: 10.1007/s10584-009-9649-4 Google Scholar
  8. Brázdil R (1996) Reconstructions of past climate from historical sources in the Czech Lands. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic variations and forcing mechanisms of the last 2000 years. Springer, Berlin, pp 409–431Google Scholar
  9. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Change 70:363–430. doi: 10.1007/s10584-005-5924-1 CrossRefGoogle Scholar
  10. Brázdil R, Černušák T, Řezníčková L (2008) Weather information in the diaries of the Premonstratensian Abbey at Hradisko, in the Czech Republic, 1693–1783. Weather 63(7):201–207. doi: 10.1002/wea.264 CrossRefGoogle Scholar
  11. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemisphere: part 1, local and regional climate signals. Holocene 12:737–757. doi: 10.1191/0959683602hl587rp CrossRefGoogle Scholar
  12. Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  13. Burri M, Rutishauser T (2008) Pflanzenphänologische Beobachtungen—Dank Johann Jakob Sprünglis Aufzeichnungen zu gesteigerten Ernten und neuen Erkenntnissen in der Klimaforschung. In: Stuber M, Moser P, Gerber-Visser G, Pfister C (eds) Oekonomische und Gemeinnützige Gesellschaft des Kantons Bern 1759–2009. Verlag Paul Haupt, Bern (accepted)Google Scholar
  14. Camuffo D, Jones P (eds) (2002) Improved understanding of past climatic variability from early daily European instrumental sources. Kluwer Academic Publishers, Dordrecht Boston LondonGoogle Scholar
  15. Cook ER, Kairiukstis LA (eds) (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, DordrechtGoogle Scholar
  16. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14(4):379–402. doi: 10.1002/joc.3370140404 CrossRefGoogle Scholar
  17. Dobrovolný P, Brázdil R, Valášek H, Kotyza O, Macková J, Halíčková M (2009) A standard paleoclimatological approach to temperature reconstruction in historical climatology: an example from the Czech Republic, AD 1718–2007. Int J Climatol 29(10):1478–1492. doi: 10.1002/joc.1789 CrossRefGoogle Scholar
  18. Eddy JA (1976) The Maunder minimum. Science 192:1189–1202. doi: 10.1126/science.192.4245.1189 CrossRefGoogle Scholar
  19. Esper J, Frank DC, Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed amplitude for the past millennium. Geophys Res Lett 32:L07711. doi: 10.1029/2004GL021236 CrossRefGoogle Scholar
  20. Flohn H (1979) Zwei bayerische Wetterkalender aus der Reformationszeit. Wiss Mitt Meteor Inst München 35:173–177Google Scholar
  21. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007a) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310. doi: 10.1016/j.quascirev.2007.08.002 CrossRefGoogle Scholar
  22. Frank D, Esper J, Cook ER (2007b) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34:L16709. doi: 10.1029/2007GL030571 CrossRefGoogle Scholar
  23. Glaser R (1997) On the course of temperature in central Europe since the year 1000 AD. Hist Soc Res 22:59–87Google Scholar
  24. Glaser R (2001) Klimageschichte Mitteleuropas. 1000 Jahre Wetter, Klima, Katastrophen. Primus Verlag, DarmstadtGoogle Scholar
  25. Glaser R (2008) Klimageschichte Mitteleuropas. 1200 Jahre Wetter, Klima, Katastrophen. Primus Verlag, DarmstadtGoogle Scholar
  26. Glaser R, Riemann D (2009) A thousand year record of climate variation for Central Europe at a monthly resolution. J Quat Sci 24(5):437–449CrossRefGoogle Scholar
  27. Glaser R, Stangl H (2004) Climate and floods in Central Europe since AD 1000: data, methods, results and consequences. Surv Geophys 25:485–510. doi: 10.1007/s10712-004-6201-y CrossRefGoogle Scholar
  28. Gouirand I, Linderholm H, Moberg A, Wohlfarth B (2008) On the spatiotemporal characteristics of Fennoscandian tree-ring based summer temperature reconstructions. Theor Appl Climatol 91:1–25. doi: 10.1007/s00704-007-0311-7 CrossRefGoogle Scholar
  29. Guiot J, Nicault A, Rathgeber C, Edouard JL, Guibal F, Pichard G, Till C (2005) Last-millenium summer temperature variations in western Europe based on proxy data. Holocene 15:489–500. doi: 10.1191/0959683605hl819rp CrossRefGoogle Scholar
  30. Jones PD (2001) Early European instrumental record. In: Jones PD, Ogilvie AEJ, Davies TD, Briffa K (eds) History and climate: memories of the future? Kluwer Academic Press, New York, pp 55–77Google Scholar
  31. Jones PD, Briffa KR (2006) Unusual climate in northwest Europe during the period 1730 to 1745 based on instrumental and documentary data. Clim Change 79:361–379. doi: 10.1007/s10584-006-9078-6 CrossRefGoogle Scholar
  32. Jones PD, Osborn TJ, Briffa KR, Folland CK, Horton EB, Alexander LV, Parker DE, Rayner NA (2001) Adjusting for sampling density in grid box land and ocean surface temperature series. J Geophys Res 106(D4):3371–3380CrossRefGoogle Scholar
  33. Leijonhufvud L, Wilson R, Moberg A (2008) Documentary data as proxy variables for Stockholm late winter to early spring temperatures in the 18th and 19th centuries. Holocene 18:333–343. doi: 10.1177/0959683607086770 CrossRefGoogle Scholar
  34. Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2009) Five centuries of winter/spring temperatures in Stockholm reconstructed from documentary evidence and instrumental observations. Clim Change. doi: 10.1007/s10584-009-9650-y Google Scholar
  35. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea-level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  36. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503. doi: 10.1126/science.1093877 CrossRefGoogle Scholar
  37. Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) The exceptional European warmth of autumn 2006 and winter 2007: historical context, the underlying dynamics and its phenological impacts. Geophys Res Lett 34:L12704. doi: 10.1029/2007GL029951 CrossRefGoogle Scholar
  38. Luterbacher J, Koenig SJ, Franke J, van der Schrier G, Della-Marta PM, Jacobeit J, Küttel M, Gonzalez-Rouco F, Zorita E, Xoplaki E, Stössel M, Rutishauser T, Wanner H, Pfister C, Brázdil R, Dobrovolný P, Camuffo D, Bertolin C, Moberg A, Leijonhufvud L, Söderberg J, Allan R, Wilson R, Wheeler D, Barriendos M, Glaser R, Riemann D, Nordli PØ, Limanówka D, van Engelen A, Zerefos CS (2009) Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models. Clim Change (this volume)Google Scholar
  39. Manley G (1974) Central England temperatures: monthly means 1659 to 1973. Q J Royal Meteorol Soc 100:389–405. doi: 10.1002/qj.49710042511 CrossRefGoogle Scholar
  40. Mann ME, Gille E, Bradley RS, Hughes MK, Overpeck JT, Keimig FT, Gross W (2000) Global temperature patterns in past centuries: an interactive presentation. Earth Interact 4:1–29. doi: 10.1175/1087-3562(2000)004<0001:GTPIPC>2.3.CO;2 CrossRefGoogle Scholar
  41. Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34:L20705. doi: 10.1029/2007GL031381 CrossRefGoogle Scholar
  42. Osborn TJ, Briffa KB, Jones PD (1997) Adjusting variance for sample size in tree-ring chronologies and other regional mean timeseries. Dendrochronologia 15:89–99Google Scholar
  43. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26(4):387–405. doi: 10.1007/s00382-005-0090-8 CrossRefGoogle Scholar
  44. Peterson TC, Easterling DR, Karl TR, Groisman P, Auer I, Böhm R, Plummer N, Nicholis N, Torok S, Vincent L, Tuomenvirta H, Salinger J, Förland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ climate data: a review. Int J Climatol 18(13):1493–1517. doi: 10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T CrossRefGoogle Scholar
  45. Pfister C (1981) Die Fluktuationen der Weinmosterträge im schweizerischen Weinland vom 16. bis ins frühe 19. Jahrhundert. Klimatische Ursachen und sozioökonomische Bedeutung. Schweiz. Zeitschrift für Geschichte 31:455–491Google Scholar
  46. Pfister C (1984) Das Klima der Schweiz von 1525 bis 1860 und seine Bedeutung in der Geschichte von Bevölkerung und Landwirtschaft, Academia Helvetica 5, 2 vols. Verlag Paul Haupt, BernGoogle Scholar
  47. Pfister C (1992) Monthly temperature and precipitation in central Europe 1525–1979: quantifying documentary evidence on weather and its effects. In: Bradley RS, Jones PD (eds) Climate since AD 1500. Routledge, London, pp 118–143Google Scholar
  48. Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen (1496–1995). Verlag Paul Haupt, BernGoogle Scholar
  49. Pfister C, Brázdil R (1999) Climatic variability in sixteenth-century Europe and its social dimension: a synthesis. Clim Change 43(1):5–53. doi: 10.1023/A:1005585931899 CrossRefGoogle Scholar
  50. Pfister C, Brázdil R, Glaser R, Barriendos M, Camuffo D, Deutsch M, Dobrovolný P, Enzi S, Guidoboni E, Kotyza O, Militzer S, Rácz L, Rodrigo FS (1999) Documentary evidence on climate in sixteenth-century Europe. Clim Change 43:55–110. doi: 10.1023/A:1005540707792 CrossRefGoogle Scholar
  51. Pfister C, Luterbacher J, Wanner H, Wheeler D, Brázdil R, Ge Q, Hao Z, Moberg A, Grab S, Rosario del Prieto M (2008) Documentary evidence as climate proxies. In: PAGES (Past Global Changes). Proxy-specific White Paper produced from the PAGES/CLIVAR workshop, Trieste, 2008. Accessed 8 May 2009
  52. Przybylak R, Majorowicz J, Wójcik G, Zielski A, Chorążyczewski W, Marciniak K, Nowosad W, Oliński P, Syta K (2005) Temperature changes in Poland from the 16th to the 20th centuries. Int J Climatol 25(6):773–791. doi: 10.1002/joc.1149 CrossRefGoogle Scholar
  53. Rácz L (1999) Climate history of Hungary since 16th century: past, present and future. Centre for Regional studies of Hungarian Academy of Sciences, PecsGoogle Scholar
  54. Rutherford S, Mann ME, Osborn TJ, Bradley RS, Briffa KR, Hughes MK, Jones PD (2005) Proxy-based Northern Hemisphere surface temperature reconstructions: sensitivity to method, predictor network, target season, and target domain. J Clim 18:2308–2329. doi: 10.1175/JCLI3351.1 CrossRefGoogle Scholar
  55. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(6972):332–336. doi: 10.1038/nature02300 CrossRefGoogle Scholar
  56. Shabalova MV, van Engelen AFV (2003) Evaluation of a reconstruction of winter and summer temperatures in the Low countries, AD 764–1998. Clim Change 58(1–2):219–242. doi: 10.1023/A:1023474032539 CrossRefGoogle Scholar
  57. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder minimum. Science 294(5549):2149–2152. doi: 10.1126/science.1064363 CrossRefGoogle Scholar
  58. Tuomenvirta H, Alexandersson H, Drebs A, Frich P, Nordli PØ (2000) Trends in Nordic and Arctic temperature extremes and ranges. J Clim 13(5):977–990. doi: 10.1175/1520-0442(2000)013<0977:TINAAT>2.0.CO;2 CrossRefGoogle Scholar
  59. van Engelen AFV, Buisman J, IJnsen F (2000) Reconstruction of the low countries temperature series AD 764–1998. In: Mikami T (ed) Proceedings of the international conference on climate change and variability—past, present and future. Tokyo Metropolitan University, Tokyo, pp 151–157Google Scholar
  60. van Engelen AFV, Buisman J, IJnsen F (2001) A millennium of weather, winds and water in the low Countries. In: Jones PD, Ogilvie AEJ, Davies TD, Briffa KR (eds) History and climate: memories of the future? Kluwer Academic Press, New York, pp 101–124Google Scholar
  61. van Vliet LJ, Young IT, Verbeek PW (1998) Recursive Gaussian derivative filters. In: Proceedings of the 14th international conference on pattern recognition, Brisbane, 16–20 August 1998Google Scholar
  62. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  63. Wahl E, Ammann C (2007) Robustness of the Mann, Bradley, Hughes reconstruction of the Northern Hemisphere surface temperatures: examination of criticisms based on the nature and processing of proxy climate evidence. Clim Change 85(1–2):33–69. doi: 10.1007/s10584-006-9105-7 CrossRefGoogle Scholar
  64. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 CrossRefGoogle Scholar
  65. Wilson R, Tudhope A, Brohan P, Briffa K, Osborn T, Tett S (2006) 250-years of reconstructed and modeled tropical temperatures. J Geophys Res 111:C10007. doi: 10.1029/2005JC003188 CrossRefGoogle Scholar
  66. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:L15713. doi: 10.1029/2005GL023424 CrossRefGoogle Scholar
  67. Zorita E, Moberg A, Leijonhufvud L, Wilson R, Brázdil R, Dobrovolný P, Luterbacher J, Pfister C, Glaser R, Söderberg J, González-Rouco F (2009) European temperature records of the past five centuries based on documentary information compared to climate simulations. Clim Change (this volume)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Petr Dobrovolný
    • 1
    Email author
  • Anders Moberg
    • 2
  • Rudolf Brázdil
    • 1
  • Christian Pfister
    • 3
  • Rüdiger Glaser
    • 4
  • Rob Wilson
    • 5
  • Aryan van Engelen
    • 6
  • Danuta Limanówka
    • 7
  • Andrea Kiss
    • 8
  • Monika Halíčková
    • 1
  • Jarmila Macková
    • 1
  • Dirk Riemann
    • 4
  • Jürg Luterbacher
    • 9
  • Reinhard Böhm
    • 10
  1. 1.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  3. 3.Institute of HistoryBern UniversityBernSwitzerland
  4. 4.Institute for Physical GeographyUniversity of FreiburgFreiburg im BreisgauGermany
  5. 5.School of Geography & GeosciencesUniversity of St AndrewsSt AndrewsUK
  6. 6.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  7. 7.Institute of Meteorology and Water ManagementKrakówPoland
  8. 8.Department of Physical Geography and GeoinformaticsUniversity of SzegedSzegedHungary
  9. 9.Department of Geography, Climatology, Climate Dynamics and Climate ChangeJustus-Liebig UniversityGiessenGermany
  10. 10.Central Institute for Meteorology and GeodynamicsViennaAustria

Personalised recommendations