Climatic Change

, Volume 100, Issue 3–4, pp 667–684 | Cite as

Trends in warm days and cold nights over the Iberian Peninsula: relationships to large-scale variables

  • Concepción Rodríguez-PueblaEmail author
  • Ascensión H. Encinas
  • Luis Alberto García-Casado
  • Susana Nieto


The aims of this study are to identify the trend of warm days and cold nights over the Iberian Peninsula and to connect the variations with large-scale variables. The reasons for performing this analysis are the effects that extremes events have on different ecosystems. Here, we present the results on spatial and temporal variability of warm days (TX90), or those exceeding the 90th percentile of maximum temperature, and cold nights (TN10), or those falling below the 10th percentile of minimum temperature. The extreme indices were derived from daily observations at stations and gridded data over land area for the period 1950 to 2006. Significant trends of more warm days and fewer cold nights were found. The trend to fewer cold nights is within the interval of global results given by the IPCC AR4 report; however, the trend to warm days is greater than the corresponding global trend. The influence of large-scale variables on these extreme indices was examined by means of the Empirical Orthogonal Function, correlation, composite maps and multiple regression analyses. Changes in TX90 are connected with the Scandinavian teleconnection index and a preferred mode of geopotential height at 500 hPa over the North Atlantic. Changes in TN10 are connected with the East Atlantic teleconnection index and the leading mode of Sea Surface Temperature (SST) variability over the North Atlantic area. Based on the links between the extreme indices and the large-scale variables we derived statistical models to describe the response of TX90 and TN10 to atmospheric circulation and SST variations. The models characterized the observed variations of TX90 and TN10 reasonably well. The results of this study encourage us to analyze, in further work, how temperature extremes might change over the Iberian Peninsula under warmer climate conditions.


Iberian Peninsula Geopotential Height Empirical Orthogonal Function Extreme Index Weather Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar KR, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi: 10.1029/2005JD006290 CrossRefGoogle Scholar
  2. Ballester J, Douville H, Chauvin F (2009) Present-day climatology and projected changes of warm and cold days in the CNRM-CM3 global climate model. Clim Dyn 32:35–54CrossRefGoogle Scholar
  3. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  4. Barrucand M, Rusticucci M, Vargas W (2008) Temperature extremes in the south of South America in relation to Atlantic Ocean surface temperature and Southern Hemisphere circulation. J Geophys Res 113:D20111. doi: 10.1029/2007JD009026 CrossRefGoogle Scholar
  5. Beniston M, Stephenson DB (2004) Extreme climatic events and their evolution under changing climatic conditions. Glob Planet Change 44:1–9CrossRefGoogle Scholar
  6. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylha K, Koffi B, Palutikof J, Scholl R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81(supplement 1):71–95CrossRefGoogle Scholar
  7. Brunet M, Jones PD, Sigro J, Saladie O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, Lopez D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112D12117. doi: 10.1029/2006JD008249 Google Scholar
  8. Carril AF, Gualdi S, Cherchi A, Navarra A (2008) Heatwaves in Europe: areas of homogeneous variability and links with the regional to large-scale atmospheric and SSTs anomalies. Clim Dyn 30:77–98CrossRefGoogle Scholar
  9. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29:251–275CrossRefGoogle Scholar
  10. Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000a) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425CrossRefGoogle Scholar
  11. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000b) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074CrossRefGoogle Scholar
  12. Folland CK, Miller C, Bader D, Crowe M, Jones P, Plummer N, Richman M, Parker DE, Rogers J, Scholefield P, Lee JQ (1999) Workshop on indices and indicators for climate extremes, Asheville, NC, USA, 3–6 June 1997—Breakout group C: temperature indices for climate extremes. Clim Change 42:31–43CrossRefGoogle Scholar
  13. Font Tullot I (2000) Climatologia de España y Portugal, Ediciones Universidad de SalamancaGoogle Scholar
  14. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212CrossRefGoogle Scholar
  15. Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27:1119–1152CrossRefGoogle Scholar
  16. Haylock MR, Hofstra N, KleinTank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  17. Jarque CM, Bera AK (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett 6:255–259CrossRefGoogle Scholar
  18. Jolliffe I (2002) Principal component analysis. Springer, BerlinGoogle Scholar
  19. Jolliffe IT, Uddin M, Vines SK (2002) Simplified EOFs—three alternatives to rotation. Clim Res 20:271–279CrossRefGoogle Scholar
  20. Jones PD, Horton EB, Folland CK, Hulme M, Parker DE, Basnett TA (1999) The use of indices to identify changes in climatic extremes. Clim Change 42:131–149CrossRefGoogle Scholar
  21. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  22. Karl TR, Easterling DR (1999) Climate extremes: selected review and future research directions. Clim Change 42:309–325CrossRefGoogle Scholar
  23. Kenyon J, Hegerl GC (2008) Influence of modes of climate variability on global temperature extremes. J Clim 21:3872–3889CrossRefGoogle Scholar
  24. Kiktev D, Sexton DMH, Alexander L, Folland CK (2003) Comparison of modeled and observed trends in indices of daily climate extremes. J Clim 16:3560–3571CrossRefGoogle Scholar
  25. Klein Tank AMG, Wijngaard JB, Konnen GP, Bohm R, Demaree G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Muller-Westermeier G, Tzanakou M, Szalai S, Palsdottir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Lopez JA, Dahlstrom B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453CrossRefGoogle Scholar
  26. Kunkel KE, Pielke RA, Changnon SA (1999) Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull Am Meteorol Soc 80:1077–1098CrossRefGoogle Scholar
  27. Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) Exceptional European warmth of autumn 2006 and winter 2007: historical context, the underlying dynamics, and its phenological impacts. Geophys Res Lett 34(34):L12704. doi: 10.1029/2007GL02995 CrossRefGoogle Scholar
  28. Maheras P, Xoplaki E, Davies T, Martin-Vide J, Bariendos M, Alcoforado MJ (1999) Warm and cold monthly anomalies across the Mediterranean basin and their relationship with circulation; 1860–1990. Int J Climatol 19:1697–1715CrossRefGoogle Scholar
  29. Meehl GA, Coauthors (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 845Google Scholar
  30. Moberg A, Jones PD, Lister D, Walther A, Brunet M, Jacobeit J, Alexander LV, Della-Marta PM, Luterbacher J, Yiou P, Chen DL, Tank A, Saladie O, Sigro J, Aguilar E, Alexandersson H, Almarza C, Auer I, Barriendos M, Begert M, Bergstrom H, Bohm R, Butler CJ, Caesar J, Drebs A, Founda D, Gerstengarbe FW, Micela G, Maugeri M, Osterle H, Pandzic K, Petrakis M, Srnec L, Tolasz R, Tuomenvirta H, Werner PC, Linderholm H, Philipp A, Wanner H, Xoplaki E (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res 111:D22106. doi: 10.1029/2006JD007103 CrossRefGoogle Scholar
  31. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706CrossRefGoogle Scholar
  32. Peterson TC (2006) Examination of potential biases in air temperature caused by poor station locations. Bull Am Meteorol Soc 87:1073–1089CrossRefGoogle Scholar
  33. Press WH, Teukolsky SA, Vetterling WT, Flanery BP (1996) Numerical recipes in Fortran 77: the art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  34. Reeves J, Chen J, Wang XLL, Lund R, Lu QQ (2007) A review and comparison of changepoint detection techniques for climate data. J Appl Meteorol Climatol 46:900–915CrossRefGoogle Scholar
  35. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang WQ (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  36. Rodriguez-Puebla C, Brunet M (2007) Variability and climate change. In: Cuadrat Prat JM, Martin-Vide J (eds) Spanish climatology: past, present and future. Prensa Universitaria de Zaragoza, Zaragoza, pp 331–390Google Scholar
  37. Rodriguez-Puebla C, Ayuso SM, Frias MD, Garcia-Casado LA (2007) Effects of climate variation on winter cereal production in Spain. Clim Res 34:223–232CrossRefGoogle Scholar
  38. Saenz J, Rodriguez-Puebla C, Fernandez J, Zubillaga J (2001) Interpretation of interannual winter temperature variations over southwestern Europe. J Geophys Res 106(D18):20641–20651CrossRefGoogle Scholar
  39. Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the North Atlantic Oscillation. J Clim 21:72–83CrossRefGoogle Scholar
  40. Schar C, Vidale PL, Luthi D, Frei C, Haberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefGoogle Scholar
  41. Sen PK (1968) Estimates of regression coefficient based on Kendalls tau. J Am Stat Assoc 63:1379–1389CrossRefGoogle Scholar
  42. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  43. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Change 79:185–211CrossRefGoogle Scholar
  44. Trenberth KE, Hoar TJ (1996) The 1990–1995 El Nino Southern Oscillation event: longest on record. Geophys Res Lett 23:57–60CrossRefGoogle Scholar
  45. Trenberth KE, Owen TW (1999) Workshop on indices and indicators for climate extremes, Asheville, NC, USA, 3–6 June 1997—Breakout group A: storms. Clim Change 42:9–21CrossRefGoogle Scholar
  46. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC Report AR4Google Scholar
  47. Wang XL, Wen QH, Wu YH (2007) Penalized maximal t test for detecting undocumented mean change in climate data series. J Appl Meteorol Climatol 46:916–931CrossRefGoogle Scholar
  48. Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic, New YorkGoogle Scholar
  49. Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2003) Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Clim Dyn 20:723–739Google Scholar
  50. Yan Z, Jones PD, Davies TD, Moberg A, Bergstrom H, Camuffo D, Cocheo C, Maugeri M, Demaree GR, Verhoeve T, Thoen E, Barriendos M, Rodriguez R, Martin-Vide J, Yang C (2002) Trends of extreme temperatures in Europe and China based on daily observations. Clim Change 53:355–392CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Concepción Rodríguez-Puebla
    • 1
    Email author
  • Ascensión H. Encinas
    • 2
  • Luis Alberto García-Casado
    • 3
  • Susana Nieto
    • 2
  1. 1.Department of Atmospheric PhysicsUniversity of SalamancaSalamancaSpain
  2. 2.Department of Applied MathematicsUniversity of SalamancaSalamancaSpain
  3. 3.Department of MathematicsUniversity of SalamancaSalamancaSpain

Personalised recommendations