Climatic Change

, Volume 100, Issue 3–4, pp 733–756 | Cite as

Persistent multi-decadal Greenland temperature fluctuation through the last millennium

  • Takuro KobashiEmail author
  • Jeffrey P. Severinghaus
  • Jean-Marc Barnola
  • Kenji Kawamura
  • Tara Carter
  • Tosiyuki Nakaegawa
Open Access


Future Greenland temperature evolution will affect melting of the ice sheet and associated global sea-level change. Therefore, understanding Greenland temperature variability and its relation to global trends is critical. Here, we reconstruct the last 1,000 years of central Greenland surface temperature from isotopes of N2 and Ar in air bubbles in an ice core. This technique provides constraints on decadal to centennial temperature fluctuations. We found that northern hemisphere temperature and Greenland temperature changed synchronously at periods of ~20 years and 40–100 years. This quasi-periodic multi-decadal temperature fluctuation persisted throughout the last millennium, and is likely to continue into the future.


Temperature Reconstruction Medieval Warm Period Abrupt Climate Change Northern Hemisphere Temperature Koci 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allegre CJ, Staudacher T, Sarda P (1987) Rare-gas systematics—formation of the atmosphere, evolution and structure of the earths mantle. Earth Planet Sci Lett 81:127–150CrossRefGoogle Scholar
  2. Alley RB, Koci BR (1990) Recent warming in central Greenland? Ann Glaciol 14:6–8Google Scholar
  3. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997a) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486CrossRefGoogle Scholar
  4. Alley RB, Shuman CA, Meese DA, Gow AJ, Taylor KC, Cuffey KM, Fitzpatrick JJ, Grootes PM, Zielinski GA, Ram M, Spinelli G, Elder B (1997b) Visual-stratigraphic dating of the GISP2 ice core: basis, reproducibility, and application. J Geophys Res C Oceans 102:26367–26381CrossRefGoogle Scholar
  5. Andersen KK, Ditlevsen PD, Rasmussen SO, Clausen HB, Vinther BM, Johnsen SJ, Steffensen JP (2006) Retrieving a common accumulation record from Greenland ice cores for the past 1800 years. J Geophys Res-Atmos. doi: 10.1029/2005JD006765 Google Scholar
  6. Chylek P, Lohmann U (2005) Ratio of the Greenland to global temperature change: comparison of observations and climate modeling results. Geophys Res Lett 32. doi: 10.1029/2005GL023552 Google Scholar
  7. Clow GD, Saltus RW, Waddington ED (1996) A new high-precision borehole-temperature logging system used at GISP2, Greenland, and Taylor Dome, Antarctica. J Glaciol 42:576–584Google Scholar
  8. Craig H, Horibe Y, Sowers T (1988) Gravitational separation of gases and isotopes in polar ice caps. Science 242:1675–1678CrossRefGoogle Scholar
  9. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  10. Crowley TJ, Baum SK, Kim KY, Hegerl GC, Hyde WT (2003) Modeling ocean heat content changes during the last millennium. Geophys Res Lett 30. doi: 10.1029/2003GL017801 Google Scholar
  11. Cuffey KM, Clow GD (1997) Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J Geophys Res C Oceans 102:26383–26396CrossRefGoogle Scholar
  12. Cuffey KM, Clow GD, Alley RB, Stuiver M, Waddington ED, Saltus RW (1995) Large Arctic temperature-change at the Wisconsin-Holocene glacial transition. Science 270:455–458CrossRefGoogle Scholar
  13. Dahl-Jensen D, Mosegaard K, Gundestrup N, Clow GD, Johnsen SJ, Hansen AW, Balling N (1998) Past temperatures directly from the Greenland Ice Sheet. Science 282:268–271CrossRefGoogle Scholar
  14. Fisher DA, Reeh N, Clausen HB (1985) Stratigraphic noise in time series derived from ice cores. Ann Glaciol 7:76–83Google Scholar
  15. Goujon C, Barnola JM, Ritz C (2003) Modeling the densification of polar firn including heat diffusion: application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. J Geophys Res-Atmos 108. doi: 10.1029/2002JD003319 Google Scholar
  16. Grachev AM, Severinghaus JP (2003a) Determining the thermal diffusion factor for Ar-40/Ar-36 in air to aid paleoreconstruction of abrupt climate change. J Phys Chem A 107:4636–4642CrossRefGoogle Scholar
  17. Grachev AM, Severinghaus JP (2003b) Laboratory determination of thermal diffusion constants for N-29(2)/N-28(2) in air at temperatures from –60 to 0 degrees C for reconstruction of magnitudes of abrupt climate changes using the ice core fossil-air paleothermometer. Geochim Cosmochim Acta 67:345–360CrossRefGoogle Scholar
  18. Grove JM (2001) The initiation of the “Little Ice Age” in regions round the North Atlantic. Clim Change 48:53–82CrossRefGoogle Scholar
  19. Grove JM (2004) Little ice ages: ancient and modern. Routledge, LondonGoogle Scholar
  20. Hegerl GC, Crowley TJ, Hyde WT, Frame DJ (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440:1029–1032CrossRefGoogle Scholar
  21. Hegerl GC, Crowley TJ, Allen M, Hyde WT, Pollack HN, Smerdon J, Zorita E (2007) Detection of human influence on a new, validated 1500-year temperature reconstruction. J Climate 20:650–666CrossRefGoogle Scholar
  22. Huber C, Beyerle U, Leuenberger M, Schwander J, Kipfer R, Spahni R, Severinghaus JP, Weiler K (2006) Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth Planet Sci Lett 243:61–73CrossRefGoogle Scholar
  23. IPCC (2001) The scientific basis: contribution of working group I to the third assessment report of the intergovermental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  24. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42. doi: 10.1029/2003RG000143 Google Scholar
  25. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32. doi: 10.1029/2005GL024233 Google Scholar
  26. Kobashi T (2007) Greenland temperature, climate change, and human society during the last 11,600 years. Ph.D. thesis, University of California, San DiegoGoogle Scholar
  27. Kobashi T, Severinghaus J, Brook EJ, Barnola JM, Grachev A (2007) Precise timing and characterization of abrupt climate change 8,200 years ago from air trapped in polar ice. Quat Sci Rev 26:1212–1222CrossRefGoogle Scholar
  28. Kobashi T, Severinghaus JP, Barnola JM (2008a) 4 ± 1.5°C abrupt warming 11,270 years ago identified from trapped air in Greenland ice. Earth Planet Sci Lett 268:397–407CrossRefGoogle Scholar
  29. Kobashi T, Severinghaus JP, Kawamura K (2008b) Argon and nitrogen isotopes of trapped air in the GISP2 ice core during the Holocene epoch (0–11,600 B.P.): methodology and implications for gas loss processes. Geochim Cosmochim Acta 72:4675–4686CrossRefGoogle Scholar
  30. Landais A, Barnola JM, Kawamura K, Caillon N, Delmotte M, Van Ommen T, Dreyfus G, Jouzel J, Masson-Delmotte V, Minster B, Freitag J, Leuenberger M, Schwander J, Huber C, Etheridge D, Morgan V (2006) Firn-air delta N-15 in modern polar sites and glacial–interglacial ice: a model-data mismatch during glacial periods in Antarctica? Quat Sci Rev 25:49–62CrossRefGoogle Scholar
  31. Li J, Zwally HJ, Cornejo C, Yi DH (2003) Seasonal variation of snow-surface elevation in North Greenland as modeled and detected by satellite radar altimetry. Ann Glaciol 37:233–238CrossRefGoogle Scholar
  32. Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C, Wanner H (2001) The Late Maunder Minimum (1675–1715)—a key period for studying decadal scale climatic change in Europe. Clim Change 49:441–462CrossRefGoogle Scholar
  33. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci U S A 105:13252–13257CrossRefGoogle Scholar
  34. Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural N-15 abundance measurements. Nature 303:685–687CrossRefGoogle Scholar
  35. Mayewski PA, Meeker LD, Twickler MS, Whitlow S, Yang QZ, Lyons WB, Prentice M (1997) Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J Geophys Res C Oceans 102:26345–26366CrossRefGoogle Scholar
  36. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable Northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  37. NASA (2009) GISS surface temperature analysis. Available at
  38. National Research Council (U.S.) Committee on Surface Temperature Reconstructions for the Last 2000 Years (2006) Surface temperature reconstructions for the last 2,000 years. National Academies Press, Washington, p xiv, 145Google Scholar
  39. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677CrossRefGoogle Scholar
  40. Ogilvie AEJ (1984) The past climate and sea-ice record from Iceland. 1. Data to Ad 1780. Clim Change 6:131–152CrossRefGoogle Scholar
  41. Ogilvie AEJ, Jonsson T (2001) “Little Ice Age” research: a perspective from Iceland. Clim Change 48:9–52CrossRefGoogle Scholar
  42. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726CrossRefGoogle Scholar
  43. Schwander J, Sowers T, Barnola JM, Blunier T, Fuchs A, Malaize B (1997) Age scale of the air in the summit ice: implication for glacial–interglacial temperature change. J Geophys Res-Atmos 102:19483–19493CrossRefGoogle Scholar
  44. Severinghaus JP, Battle MO (2006) Fractionation of gases in polar lee during bubble close-off: new constraints from firn air Ne, Kr and Xe observations. Earth Planet Sci Lett 244:474–500CrossRefGoogle Scholar
  45. Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934CrossRefGoogle Scholar
  46. Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146CrossRefGoogle Scholar
  47. Severinghaus JP, Grachev A, Luz B, Caillon N (2003) A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica. Geochim Cosmochim Acta 67:325–343CrossRefGoogle Scholar
  48. Stuiver M, Grootes PM, Braziunas TF (1995) The GISP2 delta O-18 climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat Res 44:341–354CrossRefGoogle Scholar
  49. Vinther BM, Andersen KK, Jones PD, Briffa KR, Cappelen J (2006) Extending Greenland temperature records into the late eighteenth century. J Geophys Res 111. doi: 10.1029/2005JD006810 Google Scholar
  50. Zwally HJ, Jun L (2002) Seasonal and interannual variations of firn densification and ice-sheet surface elevation at the Greenland summit. J Glaciol 48:199–207CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Takuro Kobashi
    • 1
    • 2
    Email author
  • Jeffrey P. Severinghaus
    • 1
  • Jean-Marc Barnola
    • 3
  • Kenji Kawamura
    • 1
    • 4
  • Tara Carter
    • 5
  • Tosiyuki Nakaegawa
    • 6
  1. 1.Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  2. 2.Institute for Global Environmental Strategies (IGES)HayamaJapan
  3. 3.Laboratoire de Glaciologie et Géophysique de l’EnvironnementCNRSSaint-Martin-d’HéresFrance
  4. 4.National Institute of Polar ResearchItabashi-kuJapan
  5. 5.Department of AnthropologyUniversity of California, San DiegoLa JollaUSA
  6. 6.Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan

Personalised recommendations