Advertisement

Climatic Change

, Volume 99, Issue 1–2, pp 27–46 | Cite as

Objective probabilities about future climate are a matter of opinion

  • Carlos Gay
  • Francisco Estrada
Article

Abstract

In this paper, the unfeasibility of producing “objective” probabilistic climate change scenarios is discussed. Realizing that the knowledge of “true” probabilities of the different scenarios and temperature changes is unachievable, the objective must be to find the probabilities that are the most consistent with what our state of knowledge and expert judgment are. Therefore, subjective information plays, and should play, a crucial role. A new methodology, based on the Principle of Maximum Entropy, is proposed for constructing probabilistic climate change scenarios when only partial information is available. The objective is to produce relevant information for decision-making according to different agents’ judgment and subjective beliefs. These estimates have desirable properties such as: they are the least biased estimate possible on the available information; maximize the uncertainty (entropy) subject to the partial information that is given; The maximum entropy distribution assigns a positive probability to every event that is not excluded by the given information; no possibility is ignored. The probabilities obtained in this manner are the best predictions possible with the state of knowledge and subjective information that is available. This methodology allows distinguishing between reckless and cautious positions regarding the climate change threat.

Keywords

Maximum Entropy Emission Scenario Climate Change Scenario Climate Sensitivity Relative Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen MR (2003) Possible or probable? Nature 425:242CrossRefGoogle Scholar
  2. Bruckner T, Schellnhuber HJ (1999) Climate change protection: the tolerable windows approach (IPTS Report 34 1999)Google Scholar
  3. Gay C, Estrada F, Conde C, Bravo JL (2006) Uso de Métodos de Monte Carlo para la Evaluación de la Vulnerabilidad y Riesgo ante Condiciones Actuales Bajo y Bajo Cambio Climático. V. Congreso de la Asociación Española de Climatología. Zaragoza, España, pp 18–21 de septiembre, 2006, pp 762–770Google Scholar
  4. Golan A, Judge GG, Miller D (1996) Maximum entropy econometrics: robust estimation with limited data. Wiley, New YorkGoogle Scholar
  5. Grübler A, Nakicenovic N (2001) Identifying dangers in an uncertain climate. Nature 412:15CrossRefGoogle Scholar
  6. Hulme M, Jenkins GJ, Lu X, Turnpenny JR, Mitchell TD, Jones RG, Lowe J, Murphy JM, Hassell D, Boorman P, McDonald R, Hill S (2002) Climate change scenarios for the United Kingdom: the UKCIP02 scientific report. Tyndall Centre for Climate Change Research, School of Environmental SciencesGoogle Scholar
  7. IPCC (2000) Special report on emissions scenarios. In: Nakicenovic N, Swart R (eds) Cambridge University Press, Cambridge, p 570Google Scholar
  8. IPCC (2001a) Climate change 2001: synthesis report 2001—contribution of working group I, II, and III to the third assessment report of the intergovernmental panel on climate change. In: Watson RT, and the Core Writing Team (eds) Cambridge University Press, Cambridge, p 397Google Scholar
  9. IPCC (2001b) Climate change 2001: impacts, adaptation, and vulnerability: contribution of working group II to the third assessment report of the intergovernmental panel on climate change. In: Watson RT, the Core Writing Team (eds) Cambridge University Press, Cambridge, pp 1042Google Scholar
  10. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106(4):620–630CrossRefGoogle Scholar
  11. Jaynes ET (1962) Information theory and statistical mechanics. In: Ford KW (ed) Brandeis University Summer Institute lectures in theoretical physics, vol 3. Benjamin, New York, pp 181–218Google Scholar
  12. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, CambridgeGoogle Scholar
  13. Joachim H, Schnellnhuber HJ et al (eds) (2006) Avoiding dangerous climate change Cambridge Univ. Press, CambridgeGoogle Scholar
  14. Kinzig A, Starrett D, Arrow K, Aniyar S, Bolin B, Dasgupta P, Ehrlich P, Folke C, Hanemann M, Heal G, Hoel M, Jansson AM, Jansson B-O, Kautsky N, Levin S, Lubchenco J, Mäler K-G, Pacala SW, Schneider SH, Siniscalco D, Walker B (2003) Coping with uncertainty: a call for a new science-policy forum. Ambio 32:330–335Google Scholar
  15. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  16. Meinhausen M, Hare B (2008) Missing the turn towards a low-emission path? Clim Change 91(3):233–236. doi: 10.1007/s10584-008-9486-x CrossRefGoogle Scholar
  17. Nawaz NR, Adeloye AJ (2006) Monte Carlo assessment of sampling uncertainty of climate change impacts on water resources yield in Yorkshire, England. Clim Change 78(2–4):257–292CrossRefGoogle Scholar
  18. Parry M, Lowe J, Hanson C (2008a) The consequences of delayed action on climate change. Prepared for and submitted to the 14th Conference of the Parties, Poznan, Poland. December 2008 http://www3.imperial.ac.uk/climatechange
  19. Parry M, Palutikof J, Hanson C, Lowe J (2008b) Squaring up to reality. Nature Reports Climate Change, June 2008, pp 1–3Google Scholar
  20. Preston BL (2006) Risk-based reanalysis of the effects of climate change on U.S. cold-water habitat. Clim Change 76(1–2):91–119CrossRefGoogle Scholar
  21. Schneider SH (2001) What is ‘dangerous’ climate change? Nature 411:17–19CrossRefGoogle Scholar
  22. Schneider SH (2002) Can we estimate the likelihood of climatic changes at 2100? An editorial comment. Clim Change 52(4):441–451CrossRefGoogle Scholar
  23. Schneider SH (2003). Imaginable surprise. In: Potter TD, Colman B (eds) Handbook of weather, climate and water: atmospheric chemistry, hydrology, and societal impacts. Wiley, New YorkGoogle Scholar
  24. Schneider SH, Lane J (2006) An overview of “dangerous” climate change. In: Schellnhuber HJ (ed) Avoiding dangerous climate change. Cambridge University Press, CambridgeGoogle Scholar
  25. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–656Google Scholar
  26. UNFCCC (2008a) Handbook on vulnerability and adaptation assessment. http://unfccc.int/resource/userman_nc.pdf. Accessed 1 October 2008
  27. UNFCCC Secretariat (2008b) Compendium on methods and tools to evaluate impacts of, and vulnerability to, climate change, pp 228Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Centro de Ciencias de la Atmósfera, UNAMCiudad UniversitariaMexicoMexico

Personalised recommendations