Climatic Change

, Volume 99, Issue 1–2, pp 155–192 | Cite as

Southern hemisphere atmospheric circulation: impacts on Antarctic climate and reconstructions from Antarctic ice core data

  • Andrew RussellEmail author
  • Glenn R. McGregor


The atmospheric circulation patterns in the Southern Hemisphere have had a significant impact on the climate of the Antarctic and there is much evidence that these circulation patterns have changed in the recent past. This change is thought to have contributed to the warming trend observed at the Antarctic Peninsula over the last 50 years—one of the largest trends observed in this period on the planet. The trends associated with the continental Antarctic climate are less clear but are likely to be impacted less directly by atmospheric circulation changes. The circulation changes can be put into the context of longer timescales by considering atmospheric circulation reconstructions that have been performed using data from Antarctic ice cores. In this review paper we look at the main body of work examining: Antarctic climate trends; the understanding and impact of atmospheric circulation of the mid- to high-latitudes of the Southern Hemisphere; and the usefulness and reliability of atmospheric circulation reconstructions from Antarctic ice core data. Finally, beyond several of the more quantitative reconstructions, it is deemed that an assessment of their consistency is not possible due to the variety of circulation characteristics that the various reconstructions consider.


Antarctic Peninsula Advanced Very High Resolution Radiometer Advanced Very High Resolution Radiometer Southern Annular Mode Southern Annular Mode Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abram NJ, Mulvaney R, Wolff EW, Mudelsee M (2007) Ice core records as sea ice proxies: an evaluation from the Weddell Sea region of Antarctica. J Geophys Res 112:D15101. doi: 10.1029/2006JD008139 Google Scholar
  2. Appenzeller C, Stocker TF, Anklin M (1998) North Atlantic oscillation dynamics recorded in Greenland ice cores. Science 282:446–449Google Scholar
  3. Basile I, Petit JR, Touron S, Grousset FE, Barkov N (2001) Volcanic layers in Antarctic (Vostok) ice cores: source identification and atmospheric implications. J Geophys Res 106(D23):31915–31931Google Scholar
  4. Bengtsson L, Hodges KI, Hagemann S (2004) Sensitivity of large-scale atmospheric analyses to humidity observations and its impact on the global water cycle and tropical and extratropical weather systems in ERA40. Tellus 56A:202–217Google Scholar
  5. Bertler, NAN, Barrett PJ, Mayewski PA, Fogt RL, Kreutz KJ, Shulmeister J (2004) El Niño suppresses Antarctic warming. Geophys Res Lett 31:L15207. doi: 10.1029/2004GL020749 Google Scholar
  6. Bradley RS (1999) Palaeoclimatology: reconstructing climates of the Quaternary, 2nd edn. Academic, San DiegoGoogle Scholar
  7. Bromwich DH (1988) Snowfall in high southern latitudes. Rev Geophys 26:149–168Google Scholar
  8. Bromwich DH, Rogers AN, Kallberg P, Cullather RI, White JWC, Kreutz KJ (2000) ECMWF analyses and reanalyses depiction of ENSO signal in Antarctic precipitation. J Climate 13:1406–1420Google Scholar
  9. Bromwich DH, Weaver CJ (1983) Latitudinal displacement from main moisture source controls δ 18O of snow in coastal Antarctica. Nature 301:145–147Google Scholar
  10. Bromwich DH, Fogt RL (2004) Strong trends in the skill of the ERA-40 and NCEP/NCAR reanalyses in the high and middle latitudes of the Southern Hemisphere, 1958–2001. J Climate 17:4603–4619Google Scholar
  11. Carleton AM (1989) Antarctic sea-ice relationships with indices of the atmospheric circulation of the Southern Hemisphere. Clim Dyn 3:207–220Google Scholar
  12. Carleton AM (2003) Atmospheric teleconnections involving the Southern Ocean. J Geophys Res 108(C4):8080. doi: 10.1029/2000JC000379 Google Scholar
  13. Chapman WL, Walsh JE (2007) A synthesis of Antarctic temperatures. J Climate 20:4096–4117Google Scholar
  14. Ciais P, White JWC, Jouzel J, Petit JR (1995) The origin of present-day Antarctic precipitation from surface snow deuterium excess data. J Geophys Res 100(D9):18917–18927Google Scholar
  15. Comiso JC (2000) Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J Climate 13:1674–1696Google Scholar
  16. Connolley WM (1997) Variability in annual mean circulation in the southern high latitudes. Clim Dyn 13:745–756Google Scholar
  17. Connolley WM (2002) Long-term variation of the Antarctic circumpolar wave. J Geophys Res 108(C4):8076. doi: 10.1029/2000JC000380 Google Scholar
  18. Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802Google Scholar
  19. Cullather RI, Bromwich DH, van Woert ML (1996) Interannual variations in the Antarctic precipitation related to El niÑo-Southern Oscillation. J Geophys Res 101(D14):19109–19118Google Scholar
  20. Cullather RI, Bromwich DH, Grumbine RW (1997) Validation of operational numerical analyses in Antarctic latitudes. J Geophys Res 102(D12):13761–13784Google Scholar
  21. Curran MAJ, Palmer AS, van Ommen TD, Morgan VI, Phillips KL, McMorrow AJ, Mayewski PA (2002) Post-depositional movement of methanesulphonic acid at Law Dome, Antarctica, and the influence of accumulation rate. Ann Glaciol 35:333–339Google Scholar
  22. Curran MAJ, van Ommen TD, Morgan VI, Phillips KL, Palmer AS (2003) Ice core evidence for Antarctic sea ice decline since the 1950s. Science 302:1203–1206Google Scholar
  23. Curran MAJ, van Ommen TD, Morgan V (1998) Seasonal characteristics of the major ions in the high-accumulation Dome Summit South ice core, Law Dome, Antarctica. Ann Glaciol 27:385–390Google Scholar
  24. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468Google Scholar
  25. Delaygue G, Jouzel J, Masson V, Koster RD, Bard E (2000a) Validity of the isotopic thermometer in central Antarctica: limited impact of glacial precipitation seasonality and moisture origin. Geophys Res Lett 27:2677–2860Google Scholar
  26. Delaygue G, Masson V, Jouzel J, Koster RD, Healy RJ (2000b) The origin of Antarctic precipitation: a modelling approach. Tellus 52B:19–36Google Scholar
  27. Dell’Aquila A, Ruti PM, Calmanti S, Lucarini V (2007) Southern Hemisphere midlatitude atmospheric variability of the NCEP-NCAR and ECMWF reanalyses. J Geophys Res 112:D08106. doi: 10.1029/2006JD007376 Google Scholar
  28. Delmotte B, Petit JR, Krinner G, Maggi V, Jouzel J, Udisti R (2005) Ice core evidence for secular variability and 200-year dipolar oscillations in atmospheric circulation over East Antarctica during the Holocene. Clim Dyn 24:641–654Google Scholar
  29. Delmotte B, Petit JR, Andersen KK, Basile-Doelseh I, Maggi V, Lipenkov VY (2004) Dust size evidence for opposite regional atmospheric circulation changes over east Antarctica during the last climatic transition. Clim Dyn 23:427–438Google Scholar
  30. Domack E, Duran D, Leventer A, Ishman S, Doane S, McCallum S, Amblas D, Ring J, Gilbert R, Prentice M (2005) Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436:681–685Google Scholar
  31. Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520Google Scholar
  32. Enomoto H (1991) Fluctuations of snow accumulation in the Antarctic and sea level pressure in the Southern Hemisphere in the last 100 years. Clim Change 18:67–87Google Scholar
  33. EPICA community members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628Google Scholar
  34. Fischer H (2001) Imprint of large-scale atmospheric transport patterns on sea-salt records in northern Greenland ice cores. J Geophys Res 106(D20):23977–23984Google Scholar
  35. Fischer H, Traufetter F, Oerter H, Weller R, Miller H (2004) Prevalence of the Antarctic Circumpolar Wave over the last two millenia recorded in Dronning Maud Land ice. Geophys Res Lett 31:L08202. doi: 10.1029/2003GL019186 Google Scholar
  36. Fischer H, Siggaard-Andersen M-L, Ruth U, Röthlisberger R, Wolff E (2007) Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev Geophys 45:RG1002. doi: 10.1029/2005RG000192 Google Scholar
  37. Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J Climate 19:979–997Google Scholar
  38. Fundel F, Fischer H, Weller R, Traufetter F, Oerter H, Miller H (2006) Influence of large-scale teleconnection patterns on methane sulfonate ice core records in Dronning Maud Land. J Geophys Res 111(D4):D04103. doi: 10.1029/2005JD005872 Google Scholar
  39. Fyfe JC, Boer GJ, Flato GM (1999) The Arctic and Antarctic oscillations and their projected changes under global warming. Geophys Res Lett 26:1601–1604Google Scholar
  40. Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical southern hemisphere winds and currents. Geophys Res Lett 33:L06701. doi: 10.1029/2005GL025332 Google Scholar
  41. Garcia RR, Diaz HF, Herrera RG, Eischeid J, Prieto MD, Hernandez E, Gimeno L, Duran FR, Bascary AM (2001) Atmospheric circulation changes in the tropical Pacific inferred from the voyages of the Manila galleons in the sixteenth-eighteenth centuries. Bull Am Meteorol Soc 82:2435–2455Google Scholar
  42. Genthon C, Cosme E (2003) Intermittent signature of ENSO in West-Antarctic precipitation. Geophys Res Lett 30:2081. doi: 10.1029/2003GL018280 Google Scholar
  43. Genthon C, Krinner G, Sacchettini (2003) Interannual Antarctic tropospheric circulation and precipitation variability. Clim Dyn 21:289–307Google Scholar
  44. Gerreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J Climate 12:2113–2123Google Scholar
  45. Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273–275Google Scholar
  46. Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the Southern Annular Mode. Geophys Res Lett 33:L23704. doi: 10.1029/2006GL027721 Google Scholar
  47. Glasser NF, Scambos TA (2008) A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. Ann Glaciol 53:3–16Google Scholar
  48. Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26:459–462Google Scholar
  49. Goodwin ID, van Ommen TD, Curran MAJ, Mayewski PA (2004) Mid latitude climate variability in the South Indian and South-West Pacific regions since 1300 AD. Clim Dyn 22:783–794Google Scholar
  50. Goodwin I, de Angelis M, Pook M, Young NW (2003) Snow accumulation variability in Wilkes Land, East Antarctica and the relationship to atmospheric ridging in the 130°–170°E region since 1930. J Geophys Res 108(D21):4673. doi: 10.1029/2002JD002995 Google Scholar
  51. Guo Z, Bromwich DH, Hines KM (2004) Modeled Antarctic precipitation. Part II: ENSO modulation over west Antarctica. J Climate 17:448–465Google Scholar
  52. Hall JS, Wolff EW (1998) Causes of seasonal and daily variations in aerosol sea-salt concentrations at a coastal Antarctic station. Atmos Environ 32:3669–3677Google Scholar
  53. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104(D24):30997–31022Google Scholar
  54. Harangozo SA (2000) A search for ENSO teleconnections in the west Antarctic Peninsula climate in Austral winter. Int J Climatol 20:663–679Google Scholar
  55. Harangozo SA (2006) Atmospheric circulation impacts on winter maximum sea ice extent in the west Antarctic Peninsula region (1979–2001). Geophys Res Lett 33:L02502. doi: 10.1029/2005GL024978 Google Scholar
  56. Harris JM (1992) An analysis of 5-day midtropospheric flow patterns for the South Pole: (1985–1989). Tellus 44B:409–421Google Scholar
  57. Hartmann DL, Wallace JM, Limpasuvan V, Thompson DWJ, Holton JR (2000) Can ozone depletion and global warming interact to produce rapid climate change? Proc Natl Acad Sci 97:1412–1417Google Scholar
  58. Helsen MM, van de Wal RSW, van den Broeke MR (2007) The isotopic composition of present-day antarctic snow in a lagrangian atmospheric simulation. J Climate 20:739–756Google Scholar
  59. Helsen MM, van de Wal RSW, van den Broeke MR, Masson-Delmotte V, Meijer HAJ, Scheele MP, Werner M (2006) Modeling the isotopic composition of Antarctic snow using backward trajectories: Simulation of snow pit records. J Geophys Res 111:D15109. doi: 10.1029/2005JD006524 Google Scholar
  60. Hines KM, Bromwich DH, Marshall GJ (2000) Aritificial surface pressure trends in the NCEP-NCAR reanalysis over the Southern Ocean and Antarctica. J Climate 13:3940–3952Google Scholar
  61. Houseago RE, McGregor GR, King JC, Harangozo SA (1998) Climate anomaly wave-train patterns linking southern low and high latitudes during south Pacific warm and cold events. Int J Climatol 18:1181–1193Google Scholar
  62. Howarth DA, Rayner JN (1986) Estimates of sources and sinks of atmospheric moisture in the Southern Hemisphere. In: Second international conference on Southern Hemisphere meteorology. American Meteorological Society, Boston, pp 163–166Google Scholar
  63. Hurrell JW, van Loon H (1994) A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus 46A:325–338Google Scholar
  64. Ichiyanagi K, Numaguti A, Kato K (2002) Interannual variation of stable isotopes in Antarctic precipitation in response to El Niño-Southern Oscillation. Geophys Res Lett 29. doi: 10.1029/2000GL012815
  65. IPCC (2007) Climate Change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  66. Jacka TH, Budd WF, Holder A (2004) A further assessment of surface temperature changes at stations in the Antarctic and Southern Ocean, (1949–2002). Ann Glaciol 39:331–338Google Scholar
  67. Jones DA, Simmonds IH (1993) A climatology of southern hemisphere extratropical cyclones. Clim Dyn 9:131–145Google Scholar
  68. Jones DA, Simmonds IH (1994) A climatology of southern hemisphere anticyclones. Clim Dyn 10:333–348Google Scholar
  69. Jones JM, Widmann M (2003) Instrument- and tree-ring-based estimates of the Antarctic oscillation. Clim Dyn 16:3511–3524Google Scholar
  70. Jones JM, Widmann M (2004) Early peak in Antarctic oscillation index. Nature 432:290–291Google Scholar
  71. Jones JM, Fogt RL, Widmann M, Marshall GJ, Jones PD, Visbeck M (2009) Historical Southern Hemisphere annular mode variability. Part I: century length seasonal reconstructions of the Southern Hemisphere annular mode. J Climate 22. doi: 10.1175/2009JCLI2785.1 Google Scholar
  72. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002. doi: 10.1029/2003RG000143 Google Scholar
  73. Justino F, Peltier WR (2008) Climate anomalies induced by the Arctic and Antarctic Oscillations: glacial maximum and present-day perspectives. J Climate 21:459–475Google Scholar
  74. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Josepth D (1996) The NCEP/NCAR 40-year reanalysis preoject. Bull Am Meteorol Soc 77:437–471Google Scholar
  75. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643Google Scholar
  76. King JC (1994) Recent climatic variability in the vicinity of the Antarctic Peninsula. Int J Climatol 14:357–369Google Scholar
  77. King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge University Press, CambridgeGoogle Scholar
  78. Kreutz KA, Mayewski PA, Whitlow S, Twickler MS (1998) Limited migration of soluable ionic species in a Siple Dome, Antarctica, ice core. Ann Glacio 27:371–377Google Scholar
  79. Kreutz KJ, Mayewski PA (1999) Spatial variability of Antarctic surface snow glaciochemistry: implications for paleoatmospheric circulation reconstruction. Antarct Sci 11:105–118Google Scholar
  80. Kreutz KJ, Mayewski PA, Pittalwala II, Meeker LD, Twickler MS, Whitlow SI (2000) Sea level pressure variability in the Amundsen Sea region inferred from a west Antarctic glaciochemical record. J Geophys Res 105(D3):4047–4059Google Scholar
  81. Kreutz KJ, Mayewski PA, Meeker LD, Twickler MS, Whitlow SI, Pittalwala II (1997) Bipolar changes in atmospheric circulation during the little ice age. Science 277:1294–1296Google Scholar
  82. Kushner PJ, Held IM, Delworth TL (2001) Southern Hemisphere atmospheric circulation response to global warming. J Climate 14:2238–2249Google Scholar
  83. Kwok R, Comiso JC (2002a) Southern ocean climate and sea ice anomalies associated with the southern oscillation. J Climate 15:487–501Google Scholar
  84. Kwok R, Comiso JC (2002b) Spatial patterns of variability in Antarctic surface temperature: connections to the Southern Hemisphere annular mode and the southern oscillation. Geophys Res Lett 29. doi: 10.1029/2002GL015415
  85. Le Quere C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the southern ocean CO2 sink due to recent climate change. Science 316. doi: 10.1126/science.1136188
  86. Legrand MR, Feniet-Saigne C (1991) Methanesulfonic acid in south polar snow layers: a record of strong El Niño? Geophys Res Lett 18:187–190Google Scholar
  87. Legrand MR, Mayewski PA (1997) Glaciochemistry of polar ice cores: a review. Rev Geophys 35:219–243Google Scholar
  88. Legrand MR, and Delmas RJ (1984) The ionic balance of Antarctic snow: a 10-year detailed record. Atmos Environ 18:1867–1874Google Scholar
  89. Legrand MR, Delmas RJ (1986) Relative contributions of tropospheric and stratospheric sources to nitrate in Antarctic snow. Tellus 38B:236–249Google Scholar
  90. Legrand MR, Kirchner S (1988) Polar atmospheric circulation and chemistry of recent (1957–1983) south polar precipitation. Geophys Res Lett 15:879–882Google Scholar
  91. Legrand MR, Kirchner S (1990) Origins and variations of nitrate in south polar precipitation. J Geophys Res 95:3493–3507Google Scholar
  92. Leonard S, Turner J, van der Wal A (1999) An assessment of three automatic depression tracking schemes. Meteorol Appl 6:173–183Google Scholar
  93. Limpasuvan V, Hartmann DL (1999) Eddies and the annular mode of climate variability. Geophys Res Lett 26:3133–3136Google Scholar
  94. Liss PS, Chuck AL, Turner SM, Watson AJ (2004) Air-sea gas exchange in Antarctic waters. Antarct Sci 16:517–529Google Scholar
  95. Lynch A, Uotila P, Cassano JJ (2006) Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 2: Antarctic. Int J Climatol 26:1181–1199Google Scholar
  96. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079Google Scholar
  97. Marshall GJ (2000) An examination of the precipitation regime at Thurston Island, Antarctica, from ECMWF re-analysis data. Int J Climatol 20:255–277Google Scholar
  98. Marshall GJ (2002) Analysis of recent circulation and thermal advection change in the northern Antarctic Peninsula. Int J Climatol 22:1557–1567Google Scholar
  99. Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Climate 16:4134–4143Google Scholar
  100. Marshall GJ (2007) Half-century seasonal relationships between the southern annular mode and Antarctic temperatures. Int J Climatol 27:373–383Google Scholar
  101. Marshall GJ, Orr A, van Lipzig NPM, King JC (2006) The impact of a changing Southern Hemisphere annular mode on Antarctic peninsula summer temperatures. J Climate 19:5388–5404Google Scholar
  102. Marshall GJ, Turner J, Miners WD (1998) Interpreting recent accumulation records through an understanding of the regional synoptic climatology: an example from the Southern Antarctic Peninsula. Ann Glaciol 27:610–616Google Scholar
  103. Marshall GJ, Stott PA, Turner J, Connolley WM, King JC, Lachlan-Cope TA (2004) Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys Res Lett 31:L14205. doi: 10.1029/2004GL019952 Google Scholar
  104. Masson-Delmotte V, Stenni B, Jouzel J (2004) Common millenial-scale variability of Antarctic and Southern Ocean temperatures during the past 5000 years reconstructed from the EPICA Dome C ice core. The Holocene 14:145–151Google Scholar
  105. Masson-Delmotte V, Delmotte M, Morgan V, Etheridge D, van Ommen T, Tartarin S, Hoffmann G (2003) Recent Southern Indian Ocean climate variability inferred from a law dome ice core: new insights for the interpretation of coastal Antarctic isotopic records. Clim Dyn 21:153–166Google Scholar
  106. Masson-Delmotte V, Hou S, Ekaykin A, Jouzel J, Aristarain A, Bernardo RT, Bromwich D, Cattani O, Delmotte M, Falourd S, Frezzotti M, Gallée H, Genoni L, Isaksson E, Landais A, Helsen M, Hoffmann G, Lopez J, Morgan V, Motoyama H, Noone D, Oerter H, Petit JR, Royer A, Uemura R, Schmidt GA, Schlosser E, Simões JC, Steig E, Stenni B, Stievenard M, van den Broeke M, van de Wal R, van den Berg W-J, Vimeux F, White JWC (2008) A review of Antarctic surface snow isotopic composition : observations, atmospheric circulation and isotopic modelling. J Climate 21:3359–3387Google Scholar
  107. Mayewski PA, Goodwin I, (eds) (2008) SCAR report No. 33: ITASE Synthesis workshop final report, Castine, Maine, (September 2008). International Council for Science, ParisGoogle Scholar
  108. Mayewski PA, Maasch KA, White JWC, Steig EJ, Meyerson E, Goodwin I, Morgan VI, van Ommen T, Curran, MAJ, Souney J, Kreutz KJ (2004) 700 year record of Southern Hemisphere extratropical climate variability. Ann Glaciol 39:127–132Google Scholar
  109. Mayewski PA, Meeker LD, Whitlow SI, Twickler MS., Morrison MC, Bloomfield P, Bond GC, Alley RB, Gow AJ, Grootes PM, Meese D, Ram M, Taylor KC, Wumkes W (1994) Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 263:1747–1751Google Scholar
  110. Mayewski PA, Meredith MP, Summerhayes CP, Turner J, Worby A, Barrett PJ, Casassa G, Bertler NAN, Bracegirdle T, Naveira-Garabato AC, Bromwich D, Campbell H, Hamilton GS, Lyons WB, Maasch KA, Aoki S, Xiao C, van Ommen T (2009) State of the Antarctic and Southern Ocean climate system. Rev Geophys 47. doi: 10.1029/2007RG000231
  111. Mayewski PA, Twickler MS, Whitlow SI, Meeker LD, Yang Q, Thomas J, Kreutz KJ, Grootes PM, Morse DL, Steig EJ, Waddington ED, Saltzman ES, Whung P-Y, Taylor KC (1996) Climate change during the last deglaciation in Antarctica. Science 272:1636–1638Google Scholar
  112. McMorrow AJ, Curran MAJ, van Ommen TD, Morgan VI, Allison I (2002) Features of meteorological events preserved in a high-resolution Law Dome (East Antarctica) snow pit. Ann Glaciol 35:463–470Google Scholar
  113. Meehl GA, Hurrel JW, van Loon H (1998) A modulation of the mechanism of the semiannual oscillation in the Southern Hemisphere. Tellus 50A:442–450Google Scholar
  114. Meyerson EA, Mayewski PA, Kreutz KJ, Meeker LD, Whitlow SI, Twickler MS (2002) The polar expression of ENSO and sea-ice variability as recorded in a South Pole ice core. Ann Glaciol 25:430–436Google Scholar
  115. Mo KC, Ghil M (1987) Statistics and dynamics of persistent anomalies. J Atmos Sci 44:877–901Google Scholar
  116. Monaghan AJ, Bromwich DH (2008) Advances in describing recent Antarctic climate variablity. Bull Am Meteorol Soc 89:1295–1306Google Scholar
  117. Monaghan AJ., Bromwich DH, Fogt RL, Wang S-H, Mayewski PA, Dixon DA, Ekaykin A, Frezzotti M, Goodwin I, Isaaksson E, Kaspari SD, Morgan VI, Oerter H, van Ommen TD, van der Veen CJ, Wen J (2006) Insignificant change in Antarctic snowfall since the international geophysical year. Science 313:827–831Google Scholar
  118. Monaghan AJ, Bromwich DH, Chapman W, Comiso JC (2008) Recent variability and trends of antarctic near-surface temperature. J Geophys Res 113:D04105. doi: 10.1029/2007JD009094 Google Scholar
  119. Mulvaney R, Wagenbach D, Wolff EW (1998) Postdepositional change in snowpack nitrate from observation of year-round near-surface snow in coastal Antarctica. J Geophys Res 103(D9):11021–11032Google Scholar
  120. Mulvaney R, Wolff EW (1994) Spatial variability of the major chemistry of the Antarctic ice sheet. Ann Glaciol 20:440–447Google Scholar
  121. Narcisi B, Petit JR, Delmotte B, Basile-Doelseh I, Maggi V (2005) Characteristics and sources of tephra layers in the EPICA-Dome C ice record (East Antarctica): implications for past atmospheric circulation and ice core stratigraphic correlations. Earth Planet Sci Lett 239:253–265Google Scholar
  122. Noone D, Turner J, Mulvaney R (1999) Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica. J Geophys Res 104(D16):19191–19211Google Scholar
  123. Orr A, Cresswell D, Marshall GJ, Hunt JCR, Sommeria J, Wang CG, Light M (2004) A ‘low level’ explanation for the recent large warming trend over the western Antarctic Peninsula involving blocked winds and changes in zonal circulation. Geophys Res Lett 31:L06204. doi: 10.1029/2003GL019160 Google Scholar
  124. Palmer TN (1999) A nonlinear dynamical perspective on climate prediction. J Climate 12:575–591Google Scholar
  125. Park Y, Roquet F, Vivier F (2004) Quasi-stationary ENSO wave signals versus the Antarctic Circumpolar Wave scenario. Geophys Res Lett 31:L09315. doi: 10.1029/2004GL019806 Google Scholar
  126. Pasteur EC, Mulvaney R (1999) Laboratory study of the migration of methane sulphonate in firn. Ann Glaciol 45:214–218Google Scholar
  127. Pasteur EC, Mulvaney R (2000) Migration of methane sulphonate in Antarctic firn and ice. J Geophys Res 105(D9):11525–11534Google Scholar
  128. Peel DA, Mulvaney R (1992) Time-trends in the pattern of ocean-atmosphere exchanges in an ice core from the Weddell Sea sector of Antarctica. Tellus 44B:430–442Google Scholar
  129. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  130. Petit JR, White JWC, Young NW, Jouzel J, Korotkevich YS (1991) Deuterium excess in recent Antarctic snow. J Geophys Res 96(D3):5113–5122Google Scholar
  131. Pezza AB, Simmonds I, Renwick JA (2007) Southern Hemisphere cyclones and anticyclones: recent trends and links with decadal variability in the Pacific Ocean. Int J Climatol 27:1403–1419Google Scholar
  132. Physick WL (1981) Winter depression tracks and climatological jet streams in the Southern Hemisphere during the FGGE year. Bull Am Meteorol Soc 107:883–898Google Scholar
  133. Pittock AB (1980) Patterns of climatic variation in Argentina and Chile—1: precipitation (1931–60). Mon Weather Rev 108:1347–1361Google Scholar
  134. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324Google Scholar
  135. Prospero JM, Savoie DL, Saltzman ES, Larsen R (1991) Impact of oceanic sources of biogenic sulfur on sulfate aerosol concentrations at Mawson, Antarctica. Nature 350:221–223Google Scholar
  136. Pudsey CJ, Evans J (2001) First survey of Antarctic sub-ice shelf sediments reveals mid-holocene ice shelf retreat. Geology 29:787–790Google Scholar
  137. Quinn WH, Neal VT (1992) The historical record of El Niño events. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 623–648Google Scholar
  138. Rack W, Rott H (2004) Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula. Ann Glaciol 39:505–510Google Scholar
  139. Rankin AM, Wolff EW, Mulvaney R (2004) A reinterpretation of sea-salt records in Greenland and Antarctic ice cores? Ann Glaciol 39:276–282Google Scholar
  140. Rankin AM, Wolff EW, Martin S (2002) Frost flowers: implications for tropospheric chemistry and ice core interpretation. J Geophys Res 107(D23):4683. doi: 10.1029/2002JD002492 Google Scholar
  141. Reijmer CH, van den Broeke MR (2001) Moisture source of precipitation in western Dronning Maud Land, Antarctica. Antarct Sci 13:210–220Google Scholar
  142. Reijmer CH, van den Broeke MR, Scheele MP (2002) Air parcel trajectories and snowfall related in five deep drilling locations in Antarctica based on the ERA-15 dataset. J Climate 15:1957–1968Google Scholar
  143. Renwick JA (2005) Persistent positive anomalies in the Southern Hemisphere circulation. Mon Weather Rev 133:977–988Google Scholar
  144. Reusch DB, Hewitson BC, Alley RB (2005) Towards ice-core-based synoptic reconstructions of west Antarctic climate with artificial neural networks. Int J Climatol 25:581–610Google Scholar
  145. Reusch DB, Mayewski PA, Whitlow SI, Pittalwala II, Twickler MS (1999) Spatial variability of climate and past atmospheric circulation patterns from central west Antarctic glaciochemistry. J Geophys Res 104(D6):5985–6001Google Scholar
  146. Rogers JC, van Loon H (1982) Spatial variability of sea level pressure and 500mb height anomalies over the Southern Hemisphere. Mon Weather Rev 110:1375–1392Google Scholar
  147. Roscoe HK, Marshall GJ, King JC (2006) Low potential for stratospheric dynamical change to be implicated in the large winter warming in the central Antarctic Peninsula. Q J R Meteorol Soc 132:803–820Google Scholar
  148. Russell A, McGregor GR, Marshall GJ (2004) An examination of the precipitation delivery mechanisms for Dolleman Island, eastern Antarctic Peninsula. Tellus 56A:501–513Google Scholar
  149. Russell A, McGregor GR, Marshall GJ (2006) 340 years of atmospheric circulation characteristics reconstructed from an eastern Antarctic Peninsula ice core. Geophys Res Lett 33:L08702. doi: 10.1029/2006GL025899 Google Scholar
  150. Russell A, McGregor GR, Marshall GJ (2008) Eastern Antarctic Peninsula precipitation delivery mechanisms: process studies and back trajectory evaluation. Atmos Sci Lett 9:214–221Google Scholar
  151. Schlosser E (1999) Effects of seasonal variability of accumulation on yearly mean δ 18O values in Antarctic snow. J Glaciol 45:463–468Google Scholar
  152. Schlosser E, Oerter H, Masson-Delmotte V, Reijmer C (2008) Effects of seasonal variability of accumulation on yearly mean δ 18O values in Antarctic snow. J Glaciol 54:117–124Google Scholar
  153. Schneider DP, Noone DC (2007) Spatial covariance of water isotopes in ice cores during 20th century climate change. J Geophys Res 112. doi: 10.1029/2007JD008652
  154. Schneider DP, Steig EJ, Comiso JC (2004) Recent climate variability in Antarctica from satellite-derived temperature data. J Climate 17:1569–1583Google Scholar
  155. Schneider DP, Steig E (2008) Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc Natl Acad Sci U S A 105:12154–12158Google Scholar
  156. Schneider DP, Steig E, van Ommen TD, Dixon DA, Mayewski P, Jones JM, Bitz CM (2006) Antarctic temperatures over the past two centuries from ice cores. Geophys Res Lett 33(L16707)Google Scholar
  157. Sexton DMH (2001) The effect of stratospheric ozone depletion on the phase of the Antarctic Oscillation. Geophys Res Lett 28:3697–3700Google Scholar
  158. Shepherd A, Wingham D, Payne T, Skvarca P (2003) Larsen ice shelf has progressively thinned. Science 302:856–859Google Scholar
  159. Simmonds IH, Keay K (2000a) Mean Southern Hemisphere extratropical cyclone behaviour in the 40-year NCEP-NCAR reanalysis. J Climate 13:873–885Google Scholar
  160. Simmonds IH, Keay K (2000b) Variability of Southern Hemisphere extratropical cyclone behaviour (1958-97). J Climate 13:550–561Google Scholar
  161. Simmonds IH, Keay K, Lim E-P (2003) Synoptic activity in the seas around Antarctica. Mon Weather Rev 131:272–288Google Scholar
  162. Sinclair MR (1994) An objective cyclone climatology for the Southern Hemisphere. Mon Weather Rev 122:2239–2256Google Scholar
  163. Sinclair MR (1995) A climatology of cyclogenesis for the Southern Hemisphere. Mon Weather Rev 123:1601–1619Google Scholar
  164. Sinclair MR (1996) A climatology of anticyclones and blocking for the Southern Hemisphere. Mon Weather Rev 124:245–263Google Scholar
  165. Smith SR, Stearns CR (1993) Antarctic pressure and temperature anomalies surrounding the minimum in the Southern Oscillation index. J Geophys Res 98(D7):13071–13083Google Scholar
  166. Souney JM, Mayewski PA, Goodwin ID, Meeker LD, Morgan V, CurranMAJ, van Ommen TD, Palmer AS (2002) A 700-year record of atmospheric circulation developed from the Law Dome ice core, east Antarctica. J Geophys Res 107(D22). doi: 10.1029/2002JD002104
  167. Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature 457:459–463Google Scholar
  168. Streten NA, Troup AJ (1973) A synoptic climatology of satellite observed cloud vortices over the Southern Hemisphere. Q J R Meteorol Soc 99:56–72Google Scholar
  169. Taljaard JJ (1967) Development, distribution and movement of cyclones and anticyclones in the Southern Hemisphere during the IGY. J Appl Meteorol 6:973–987Google Scholar
  170. Thomas ER, Marshall GJ, McConnell JR (2008) A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophys Res Lett 35:L01706. doi: 10.1029/2007GL032529 Google Scholar
  171. Thompson DWJ, Wallace JM (2000) Annular modes of extratropical circulation. Part I: month-to-month variability. J Climate 13:1000–1016Google Scholar
  172. Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: trends. J Climate 13:1018–1036Google Scholar
  173. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899Google Scholar
  174. Tietäväinen H, Vihma T (2008) Atmospheric moisture budget over Antarctica and the Southern Ocean on the basis of ERA-40 reanalysis. Int J Climatol 28:1977–1995Google Scholar
  175. Trenberth KE (1984) Interannual variability of the Southern-Hemisphere circulation-representativeness of the year of the global weather experiment. Mon Weather Rev 112:108–123Google Scholar
  176. Trenberth KE (1995) Atmospheric circulation climate changes. Clim Change 31:427–453Google Scholar
  177. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777Google Scholar
  178. Trenberth KE, Stepaniak DP (2003a) Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J Climate 16:3691–3705Google Scholar
  179. Trenberth KE, Stepaniak DP (2003b) Seamless poleward atmospheric energy transports and implications for the Hadley Circulation. J Climate 16:3706–3722Google Scholar
  180. Trenberth KE, Stepaniak DP, Smith L (2005) Interannual variability of the patterns of atmospheric mass distribution. J Climate 18:2812–2825Google Scholar
  181. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336Google Scholar
  182. Turner J (2004) The El Niño-Southern Oscillation and the Antarctic. Int J Climatol 24:1–31Google Scholar
  183. Turner J, Marshall GJ, Lachlan-Cope T (1998) Analysis of synoptic-scale low pressure systems within the Antarctic Peninsula sector of the circumpolar trough. Int J Climatol 18:253–280Google Scholar
  184. Turner J, King JC, Lachlan-Cope T, Jones PD (2002) Recent temperature trends in the Antarctic. Nature 418:291–292Google Scholar
  185. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope T, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294Google Scholar
  186. Turner J, Lachlan-Cope TA, Colwell S, Marshall GJ, Connolley WM (2006a) Significant warming of the Antarctic winter troposphere. Science 311:1914–1917Google Scholar
  187. Turner J, Lachlan-Cope T, Thomas JP, Colwell R (1995) The synoptic origins of precipitation over the Antarctic Peninsula. Antarct Sci 7:327–337Google Scholar
  188. Turner J, Connolley WM, Lachlan-Cope T, Marshall GJ, (2006b) The performance of the Hadley Centre climate model (HadCM3) in high southern latitudes. Int J Climatol 26:91–112Google Scholar
  189. van den Broeke MR (1998a) The semi-annual oscillation and Antarctic climate. Part 1: influence on near surface temperatures (1957-79). Antarct Sci 10:175–183Google Scholar
  190. van den Broeke MR (1998b) The semi-annual oscillation and Antarctic climate. Part 2: recent changes. Antarct Sci 10:184–191Google Scholar
  191. van den Broeke MR (2005) Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys Res Lett 32:L12815. doi: 10.1029/2005GL023247 Google Scholar
  192. van den Broeke MR, van Lipzig NPM (2003) Factors controlling the near-surface wind field in Antarctica. Mon Weather Rev 131:733–743Google Scholar
  193. van Lipzig NPM, van Meijgaard E, Oerlemans J (1999) Evaluation of a regional atmospheric model using measurements of surface heat exchange processes from a site in Antarctica. Mon Weather Rev 127:1994–2011Google Scholar
  194. van Lipzig NPM, Marshall GJ, Orr A, King JC (2008) The relationship between the Southern Hemisphere Annular Mode and Antarctic Peninsula summer temperatures: analysis of a high-resolution model climatology. J Climate 21:1649–1668Google Scholar
  195. van Loon H (1965) A climatological study of the atmospheric circulation in the Southern Hemisphere during the IGY. Part I: (1 July 1957–31 March 1958). J Appl Meteorol 4:479–491Google Scholar
  196. van Loon H (1967) The half-yearly oscillations in middle and high southern latitudes and the coreless winter. J Atmos Sci 24:472–486Google Scholar
  197. Vaughan DG, Marshall GJ, Connolley WM, Parkinson CL, Mulvaney R, Hodgsen DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274Google Scholar
  198. Vaughan DG, Marshall GJ, Connolley WM, King JC, Mulvaney R (2001) Devil in the detail. Science 293:1777–1779Google Scholar
  199. Villalba R, Cook ER, D’Arrigo RD, Jacoby GC, Jones PD, Salinger MS, Palmer J (1997) Sea-level pressure variability around Antarctica since A.D. 1750 inferred from sub-Antarctic tree-ring records. Clim Dyn 13:375–390Google Scholar
  200. Vincent DG (1994) The South Pacific convergence zone (SPCZ) : a review. Mon Weather Rev 122:1949–1970Google Scholar
  201. Wagenbach D, Ducroz F, Mulvaney R, Keck K, Minikin A, Legrand MR, Hall JS, Wolff EW (1998) Sea-salt aerosol in coastal Antarctic regions. J Geophys Res 103:10961–10974Google Scholar
  202. Walker GT (1928) World weather. Q J R Meteorol Soc 54:79–87CrossRefGoogle Scholar
  203. White WB, Peterson RG (1996) An Antarctic circumpolar wave in surface pressure, wind and sea-ice extent. Nature 380:699–702Google Scholar
  204. Whitlow S, Mayewski PA, Dibb JE (1992) A comparison of major chemical species seasonal concentration and accumulation at the South Pole and Summit, Greenland. Atmos Environ 26A:2045–2054Google Scholar
  205. Wolff EW, Rankin AM, Röthlisberger R (2003) An ice core indicator of Antarctic sea ice production? Geophys Res Lett 30:2158. doi: 10.1029/2003GL018454 Google Scholar
  206. Xiao CD, Mayewski PA, Qin DH, Li ZQ, Zhang MJ, Yan YP (2004) Sea level pressure variability over the southern Indian Ocean inferred from a glaciochemical record in Princess Elizabeth Land, East Antarctica. J Geophys Res 109(D16):D16101. doi: 10.1029/2003JD004065 Google Scholar
  207. Yuan X, Martinson DG (2001) The Antarctic dipole and its predictability. Geophys Res Lett 28:3609–3612Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Earth, Atmospheric and Environmental SciencesUniversity of ManchesterManchesterUK
  2. 2.School of Geography, Geology and Environmental ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations