Climatic Change

, Volume 96, Issue 3, pp 357–378 | Cite as

Envisioning carbon capture and storage: expanded possibilities due to air capture, leakage insurance, and C-14 monitoring

Article

Abstract

In order to meet the challenge of climate change while allowing for continued economic development, the world will have to adopt a net zero carbon energy infrastructure. Due to the world’s large stock of low-cost fossil fuels, there is strong motivation to explore the opportunities for capturing the CO2 that is produced in the combustion of fossil fuels and keeping it out of the atmosphere. Three distinct sets of technologies are needed to allow for climate neutral use of fossil fuels: (1) capture of CO2 at concentrated sources like electric power plants, future hydrogen production plants and steel and cement plants; (2) capture of CO2 from the air; and (3) the safe and permanent storage of CO2 away from the atmosphere. A strong regime of carbon accounting is also necessary to gain the public’s trust in the safety and permanence of CO2 storage. This paper begins with an extensive overview of carbon capture and storage technologies, and then presents a vision for the potential implementation of carbon capture and storage, drawing upon new ideas such as air capture technology, leakage insurance, and monitoring using a radioactive isotope such as C-14. These innovations, which may provide a partial solution for managing the risks associated with long-term carbon storage, are not well developed in the existing literature and deserve greater study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison ML (2001) Hutchinson, Kansas: a geologic detective story. Geotimes. http://www.geotimes.org/oct01/feature_kansas.html
  2. Anderson GK (2003) Enthalpy of dissociation and hydration number of carbon dioxide hydrate from the Clapeyron equation. J Chem Thermodyn 35(7):1171–1183CrossRefGoogle Scholar
  3. Archer D (2005) Fate of fossil fuel CO2 in geologic time. J Geophys Res. doi:10.1029/2004JC002625 Google Scholar
  4. Astarita G (1967) Mass transfer with chemical reactions. Elsevier, New YorkGoogle Scholar
  5. Bachelor PP, McIntyre JI, Amonette JE, Hayes JC, Milbrath BD, Saripalli P (2008) Potential method for measurement of CO2 leakage from underground sequestration fields using radioactive tracers. J Radioanal Nucl Chem 277(1):85–89CrossRefGoogle Scholar
  6. Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4(5):325–331CrossRefGoogle Scholar
  7. Benson SM, Surles T (2006) Carbon dioxide capture and storage: an overview with emphasis on capture and storage in deep geological formations. In: The proceedings special issue, institute of electrical and electronics engineers (IEEE), vol 94(10). doi:10.1109/PROC.2006.883716
  8. Brewer PG, Friederich G, Peltzer ET, Orr FM Jr (1999) Direct experiments on the ocean disposal of fossil fuel CO2. Science 284(5416):943–945CrossRefGoogle Scholar
  9. de Coninck H (2008) Trojan horse or horn of plenty? Reflections on allowing CCS in the CDM. Energy Policy 36:929–936CrossRefGoogle Scholar
  10. Deutch J, Moniz EJ, Ansolabehere S, Driscoll M, Gray PE, Holdren JP, Joskow PL, Lester RK, Todreas NE (2003) The future of nuclear power: an interdisciplinary MIT study. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  11. Goff F, Lackner KS (1998) Carbon dioxide sequestering using ultramafic rocks. Environ Geosci 5(3):89–101CrossRefGoogle Scholar
  12. Hepple RP, Benson SM (2005) Geologic storage of carbon dioxide as a climate change mitigation strategy: performance requirements and the implications of surface seepage. Environ Geol 47(4):576–585CrossRefGoogle Scholar
  13. Herzog HJ, Adams EE, Auerbach D, Caulfield J (1996) Environmental impacts of ocean disposal of CO2. Energy Convers Manag 37(6–8):999–1005CrossRefGoogle Scholar
  14. Holloway S (2005) Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option. Energy 30(11–12):2318–2333CrossRefGoogle Scholar
  15. House KZ, Schrag DP, Harvey CF, Lackner KS (2006) Permanent carbon dioxide storage in deep-sea sediments. In: Proceedings of the national academy of sciences. doi:10.1073/pnas.0605318103
  16. Hovorka SD, Benson SM, Doughty C, Freifeld BM, Sakurai S, Daley TM, Kharaka YK, Holtz MH, Trautz RC, Nance HS, Myer LR, Knauss KG (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ Geosci 13(2):105–121. doi:10.1306/eg.11210505011 CrossRefGoogle Scholar
  17. Intergovernmental Panel on Climate Change (2001) Third assessment report: working group III technical summaryGoogle Scholar
  18. Intergovernmental Panel on Climate Change (2005) Special report on carbon dioxide capture and storage. Cambridge University Press, New YorkGoogle Scholar
  19. Intergovernmental Panel on Climate Change (2007) Climate change 2007: synthesis reportGoogle Scholar
  20. International Energy Agency (2008) Energy technology perspectives 2008: strategies and scenarios to 2050 (OECD: IEA: Paris)Google Scholar
  21. Keith DW, Ha-Duong M, Stolaroff JK (2006) Climate strategy with CO2 capture from air. Clim Change 74:17–45CrossRefGoogle Scholar
  22. Kelemen P, Matter J (2008) In situ carbonation of peridotite for CO2 storage. Proc Natl Acad Sci 105(45):17295–17300CrossRefGoogle Scholar
  23. Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM (2006) Gas–water–rock interactions in Frio Formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology 34(7):577–580CrossRefGoogle Scholar
  24. Kharecha PA, Hansen JE (2008) Implications of ‘peak oil’ for atmospheric CO2 and climate. Glob Biogeochem Cycles 22:GB3012. doi:10.1029/2007GB003142 CrossRefGoogle Scholar
  25. Kleypas JA, Buddemeier RW, Gattuso J-P (2001) The future of coral reefs in an age of global change. Int J Earth Sci (Geol Rundsch) 90:426–437CrossRefGoogle Scholar
  26. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120CrossRefGoogle Scholar
  27. Kutschera W (2005) Progress in isotope analysis at ultra-trace level by AMS. Int J Mass Spectrom 242(2–3):145–160Google Scholar
  28. Lackner KS (2002) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy Environ 27:193–232CrossRefGoogle Scholar
  29. Lackner KS (2003) Climate change: a guide to CO2 sequestration. Science 300(5626):1677CrossRefGoogle Scholar
  30. Lackner KS (2005) Carbon sequestration. In: Mabro R (ed) Oil in the 21st century: issues, challenges and opportunities. Oxford University Press, Oxford, pp 241–281Google Scholar
  31. Lackner KS (2006) The conundrum of sustainable energy: clean coal as one possible answer. Asian Econ Pap 4(3):30–58CrossRefGoogle Scholar
  32. Lackner KS (2008) Thermodynamics of the humidity swing driven air capture of carbon dioxide. Author’s manuscript, 9 August 2008, updated 22 August 2008Google Scholar
  33. Lackner KS (2009) Carbon dioxide capture from ambient air. In: Blum W, Keilhacker M, Platt U, Roether W (eds) The physics perspective on energy supply and climate change - a critical assessment. Eur. Phys. J. Special Topics, Springer Verlag, Bad Honnef, 2009Google Scholar
  34. Lackner KS, Sachs J (2005) A robust strategy for sustainable energy. Brookings Pap Econ Act 2:215–269CrossRefGoogle Scholar
  35. Lackner KS, Ziock H-J (2001) The US zero emission coal alliance. VGB Powertech, International Journal for Electricity and Heat Generation 12/2000, pp 57–61Google Scholar
  36. Lackner KS, Wendt CH, Butt DP, Joyce EL, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20:1153–1170CrossRefGoogle Scholar
  37. Lackner KS, Grimes P, Ziock H-J (1999a) Carbon dioxide extraction from air? LAUR-99-5113; Los Alamos National Laboratory: Los Alamos, NMGoogle Scholar
  38. Lackner KS, Ziock H-J, Grimes P (1999b) Carbon dioxide extraction from air: is it an option? In: Proceedings of the 24th international conference on coal utilization & fuel systems. Clearwater, FloridaGoogle Scholar
  39. Langdon C, Takahashi T, Sweeny C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cycles 14(2):639–654CrossRefGoogle Scholar
  40. Levine JS, Matter JM, Goldberg DM, Cook A, Lackner KS (2007) Gravitational trapping of carbon dioxide in deep sea sediments: permeability, buoyancy, and geomechanical analysis. Geophys Res Lett 34:L24703. doi:10.1029/2007GL031560 CrossRefGoogle Scholar
  41. McElligott S (2007) NRG, powerspan to develop postcapture-combustion demo site. Gasification News.Google Scholar
  42. Newell RG, Jaffe AB, Stavins RN (2006) The effects of economic and policy incentives on carbon mitigation technologies. Energy Econ 28:563–578CrossRefGoogle Scholar
  43. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686):968–972. doi:10.1126/science.1100103 CrossRefGoogle Scholar
  44. Palmgren CR, Morgan MG, Bruine de Bruin W, Keith DW (2007) Initial public perceptions of deep geological and oceanic disposal of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring and regulation. Wiley-Blackwell, New York, pp 199–222Google Scholar
  45. Park A-H, Fan L-S (2004) CO2 mineral sequestration: physically activated aqueous carbonation of serpentine and pH swing process. Chem Eng Sci 59:5241–5247CrossRefGoogle Scholar
  46. Peltier R (2008) Carbon capture: Alstom’s chilled ammonia CO2-capture process advances toward commercialization. Power (www.powermag.com)
  47. Poland JF, Davis GH (1969) Land subsidence due to withdrawal of fluids. Rev Eng Geol 2:187–269Google Scholar
  48. Robinson LA (2007) Policy monitor: how US government agencies value mortality risk reductions. Rev Environ Econ Policy 1(2):283–299. doi:10.1093/reep/rem018 CrossRefGoogle Scholar
  49. Rogner H-H (1997) An assessment of world hydrocarbon resources. Annu Rev Energy Environ 22:217–262CrossRefGoogle Scholar
  50. Sarewitz D, Nelson R (2008) Three rules for technological fixes. Nature 456(7224):871–872CrossRefGoogle Scholar
  51. Shirayama Y (1997) Biodiversity and biological impact of ocean disposal of carbon dioxide. Waste Manage 17(5–6):381–384Google Scholar
  52. Spector NA, Dodge BF (1946) Removal of carbon dioxide from atmospheric air. Trans Am Inst Chem Eng 42:827–848Google Scholar
  53. Steinberg M (1980) Synthetic carbonaceous fuels and feedstocks. US PATENT 4,197,421, FILED 17 August 1978, ISSUED 1980Google Scholar
  54. Stolaroff JK (2006) Capturing CO2 from ambient air: a feasibility assessment. PhD dissertation, Pittsburgh, Carnegie Mellon UniversityGoogle Scholar
  55. Stucki S, Schuler A, Constantinescu M (1995) Coupled CO2 recovery from the atmosphere and water electrolysis: feasibility of a new process for hydrogen storage. Int J Hydrogen Energy 20(8):653–663CrossRefGoogle Scholar
  56. Tamburri MN, Peltzer ET, Friederich GE, Aya I, Yamane K, Brewer PG (2000) A field study of the effects of CO2 ocean disposal on mobile deep-sea animals. Mar Chem 72(2–4):95–101CrossRefGoogle Scholar
  57. US Environmental Protection Agency (2004) Final regulatory analysis: control of emissions from nonroad diesel engines. EPA420-R-04-007Google Scholar
  58. Van der Zwaan B, Smekens K (2008) CO2 capture and storage with leakage in an energy-climate model. Environ Model Assess 14(2):135–148. doi:10.1007/s10666-007-9125-3 CrossRefGoogle Scholar
  59. Wilson EJ, Johnson TL, Keith DW (2003) Regulating the ultimate sink: managing the risks of geologic CO2 storage. Environ Sci Technol 37(16):3476–3483CrossRefGoogle Scholar
  60. World Resources Institute (2008) Guidelines for carbon dioxide capture, transport, and storage.Google Scholar
  61. Yegulalp TM, Lackner KS, Ziock H-J (2001) A review of emerging technologies for sustainable use of coal for power generation. Int J Surf Min Reclam Environ 15(1):52–68CrossRefGoogle Scholar
  62. Zeman FS (2007) Energy and material balance of CO2 capture from ambient air. Environ Sci Technol 41:7558–7563CrossRefGoogle Scholar
  63. Zeman FS, Lackner KS (2004) Capturing carbon dioxide directly from the atmosphere. World Resour Rev 16(2):157–172Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Earth and Environmental Engineering, Lenfest Center for Sustainable EnergyColumbia UniversityNew YorkUSA
  2. 2.The Earth Institute, Lenfest Center for Sustainable EnergyColumbia UniversityNew YorkUSA

Personalised recommendations