Climatic Change

, 97:409 | Cite as

Irrigated afforestation of the Sahara and Australian Outback to end global warming

  • Leonard OrnsteinEmail author
  • Igor Aleinov
  • David Rind
Open Access


Each year, irrigated Saharan- and Australian-desert forests could sequester amounts of atmospheric CO2 at least equal to that from burning fossil fuels. Without any rain, to capture CO2 produced from gasoline requires adding about $1 to the per-gallon pump-price to cover irrigation costs, using reverse osmosis (RO), desalinated, sea water. Such mature technology is economically competitive with the currently favored, untested, power-plant Carbon Capture (and deep underground, or under-ocean) Sequestration (CCS). Afforestation sequesters CO2, mostly as easily stored wood, both from distributed sources (automotive, aviation, etc., that CCS cannot address) and from power plants. Climatological feasibility and sustainability of such irrigated forests, and their potential global impacts are explored using a general circulation model (GCM). Biogeophysical feedback is shown to stimulate considerable rainfall over these forests, reducing desalination and irrigation costs; economic value of marketed, renewable, forest biomass, further reduces costs; and separately, energy conservation also reduces the size of the required forests and therefore their total capital and operating costs. The few negative climate impacts outside of the forests are discussed, with caveats. If confirmed with other GCMs, such irrigated, subtropical afforestation probably provides the best, near-term route to complete control of green-house-gas-induced, global warming.


General Circulation Model Gross Primary Productivity West African Monsoon Tropical Troposphere Reverse Osmosis Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Supplementary Material

(MOV 590 KB)

Supplementary Material

(MOV 537 KB)

Supplementary Material

(MOV 528 KB)

Supplementary Material

(MOV 576 KB)


  1. Abu-Zeid K, Wagdy A, Elbadawy O, Abdel-Meguid A (2004) State of the water in the Arab region. CEDARE,
  2. Allen RJ (1983) Monsoon and teleconnection variability over Australasia during the southern hemisphere summers of 1973–77. Mon Weather Rev 111:113–142CrossRefGoogle Scholar
  3. Alley R et al (2007) IPCC summary for policy makers. IPCC Secretariat, Geneva,
  4. Anthes RA (1984) Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J Clim Appl Meteorol 23:541–554CrossRefGoogle Scholar
  5. Anthes RA (1993) The global trajectory. Bul Am Meteo Soc 74:1121–1130, Google Scholar
  6. Axtell RL, McRae GJ (2006) Changing how we discount to make public policy more responsive to citizens’ time preferences. Regulatory Analysis 06-01 AEI Brookings Joint Center for Regulatory Studies,
  7. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci 104:6550–6555CrossRefGoogle Scholar
  8. Battle M, Bender ML, Trans PP, White JWC, Ellis JT, Conway T, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric O2 and ?13C. Science 287:2467–2470CrossRefGoogle Scholar
  9. Benyon RG (1999) Nighttime water use in an irrigated Eucalyptus grandis plantation. Tree Physiol 19:853–859Google Scholar
  10. Beyerle U, Rueedi J, Leuenberger M (2003) Evidence for periods of wetter and cooler climate in the Sahel between 6 and 40 kyr BP derived from groundwater. Geophys Res Lett 30:1173–1177CrossRefGoogle Scholar
  11. Braconnot P, Joussaime S, Marti O, deNoblet-Ducoudre N (1999) Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys Res Lett 26:2481–2484CrossRefGoogle Scholar
  12. Bradstock R, Williams J, Gill O (2002) Des: Flammable Australia. The fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, 462 ppGoogle Scholar
  13. Cannell MGR (1999) Environmental impacts of forest monocultures: water use, acidification, wildlife conservation, and carbon storage. New Forests 17:239–262CrossRefGoogle Scholar
  14. CEOS TIGER (2004) CEOS TIGER-Workshop. Space Technologies for Water Resources Management in Africa, 8–11 November 2004,
  15. Charney J (1975) Dynamics of deserts and drought in the Sahel. Q J Meteor Soc 101:193–202CrossRefGoogle Scholar
  16. Charney J, Stone PH, Quirk WJ (1975) Drought in the Sahara: a biogeophysical feedback mechanism. Science 187:434–435CrossRefGoogle Scholar
  17. Cifelli R, Smull BF, Lang TJ, Rutledge SA, Zipser EJ (2007) 12A.3 Radar observations of convection in large-scale disturbance during NAMMA. In: Proc. 33rd conf. on radar meteor, session 12A, Aug. 10,
  18. Claussen M (1997) Modelling biogeophysical feedback in the African and Indian Monsoon region. Clim Dyn 13:247–257CrossRefGoogle Scholar
  19. Cook KH (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Clim 12:1165–1184CrossRefGoogle Scholar
  20. Cook KH, Vizy EK (2006) Coupled model simulations of West African monsoon system: 20th century simulations and 21st century predictions. J Clim 19:3681–3703CrossRefGoogle Scholar
  21. Cook KH, Neary N, Vizy EK (2003) Mesoscale modeling of the African humid period. CLIVAR Exchanges 8:27–28Google Scholar
  22. Drobinski P, Sultan B, Janicot S (2005) The role of the Hoggar massif in the West African monsoon onset. Geophys Res Lett 32:L01705.1–L01705.5CrossRefGoogle Scholar
  23. Druyan LM (1991) The sensitivity of sub-Saharan precipitation to Atlantic SST. Clim Change 18:17–36CrossRefGoogle Scholar
  24. Duryan LM, Fulakeza M, Lonergan P (2004) Land surface influences on the West African summer monsoon: implications for synoptic disturbances. Meteorol Atmos Phys 86:261–273CrossRefGoogle Scholar
  25. Folger P (2007) Direct carbon sequestration: capturing and storing CO2. Congressional Research Service, Jan. 27,
  26. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. Forest Ecol Man 233:211–230CrossRefGoogle Scholar
  27. Friend AD, Kiang NY (2005) Land surface model development for the GISS GCM: effects of improved canopy physiology on simulated climate. J Clim 18:2883–2902CrossRefGoogle Scholar
  28. Gopalakrishnan SG, Bacon DP, Ahmad NN, Boybeyi Z, Dunn TJ, Hall MS, Jin YP, Lee CS, Mays DE, Madala RV, Sarma A, Turner MD, Wait TR (2002) An operational multiscale hurricane forecasting system. Mon Weath Rev 130:1830–1847CrossRefGoogle Scholar
  29. Gough C, Shackley S (2005) An integrated assessment of carbon dioxide capture and storage in the UK. Technical Report 47, Tyndall Project T2/21, October,
  30. Gu G, Adler RF (2004) Seasonal evolution and variability associated with the West African Monsoon System. J Climate 17:3364–3377CrossRefGoogle Scholar
  31. Hall T, Jewson S (2005) Statistical modelling of tropical cyclone tracks: a semi-parametric model for the mean trajectory. Atmos Ocean Phys, arXiv:physics/0503231v1
  32. Hansen JE (2007) Scientific reticence and sea level rise. Eviron Res Lett 2(2):024002CrossRefGoogle Scholar
  33. Hansen J, Sato M (2004) Greenhouse gas growth rates. Proc Natl Acad Sci 101:16109–16114CrossRefGoogle Scholar
  34. Hansen J, Johnson D, Lacis A, Lebedeff S, Lee P, Rind D, Russell G (1981) Climate impact of increasing atmospheric carbon dioxide. Science 213:957–966CrossRefGoogle Scholar
  35. Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeff S, Ruedy R, Travis L (1983) Efficient three-dimensional global models for climate studies: models I and II. Mon Weath Rev 111:609–662, CrossRefGoogle Scholar
  36. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang NY, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller RL, Minnis P, Novakov T, Oinas V, Perlwitz Ja, Perlwitz Ju, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res 110:D18104.1–D18104.45Google Scholar
  37. Hariri AR, Brown SM, Williamson DE, Flory JD, de Wit H, Manuck SB (2006) Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. J Neurosci 26:13213–13217CrossRefGoogle Scholar
  38. Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Orsini JAM, Nicholls N, Penner JE, and Stott PA (2007) Chapter 9: understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  39. Hopkins M (2007) Climate sceptics switch focus to economics. Nature 445:582Google Scholar
  40. Howell TA (2001) Enhancing water use efficiency in irrigated agriculture. Agron J 93:281–289Google Scholar
  41. Howell TA (2003) Irrigation efficiency. In: Stewart BA, Howell TA (eds) Encyclopedia of water science. Marcel Dekker, New York, pp 467–472Google Scholar
  42. Janicot S (1992) Spatiotemporal variability of West African rainfall. Part II: associated surface and airmass characteristics. J Climate 5:499–511CrossRefGoogle Scholar
  43. Kerr RA (2000) A North Atlantic climate pacemaker for centuries. Science 288:1984–1985CrossRefGoogle Scholar
  44. Kerr RA (2006) Global warming may be homing in on Atlantic hurricanes. Science 314:910–911CrossRefGoogle Scholar
  45. Kerr RA (2007) A dose of dust that quieted an entire hurricane season? Science 315:1351CrossRefGoogle Scholar
  46. Kiang NY, Koster RD, Moorcroft PR, Ni-Meister W, Rind DH, Aleinov I, Kharecha P, Kim Y (2007) Ent: a dynamic terrestrial ecosystem model for coupling with GCMs. NASA modeling, analysis and prediction (MAP) Science team meeting, Adelphi, MD, March 6–9, 2007.
  47. Koren I, Kaufman YJ, Washington R, Todd MC, Rudich Y, Vanderlei-Martins J, Rosenfeld D (2006) The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Env Res Lett 1:014005 (5 pp)CrossRefGoogle Scholar
  48. Kuper R, Kropelin S (2006) Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Sciencexpress, July 2006/Page 1/10.1126/science.1130989
  49. Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443CrossRefGoogle Scholar
  50. Lau KM, Bua W (2004) Mechanisms of monsoon–Southern Oscillation coupling: insights from GCM experiments. Clim Dynam 14:759–779CrossRefGoogle Scholar
  51. Lau KM, Yang S (1996) The Asian monsoon and the predictability of the tropical ocean–atmosphere system. Quart J Roy Meteor Soc 122:945–957Google Scholar
  52. Lebel T, Redelsperger J-L, Thorncroft C (2005) The international science plan for African Monsoon Multidisciplinary Analyses (AMMA). May,
  53. Lindsay RW, Zhang J (2005) The thinning of Arctic sea ice, 1988–2003: have we passed a tipping point? J Clim 18:4879–4894CrossRefGoogle Scholar
  54. Lynch-Stieglitz M (1994) The development and validation of a simple snow model for the GISS GCM. J Clim 7:1842–1855CrossRefGoogle Scholar
  55. Malkovic T (2007) The water down under. NOVA Science in the News, Feb.,
  56. Matthews AJ (2004) Interseasonal variability over tropical Africa during northern summer. J Climate 17:2427–2440CrossRefGoogle Scholar
  57. Murder EG (1975) Physiology and ecology of free-living, nitrogen-fixing bacteria. In: Stewart WDP (ed) Nitrogen fixation by free-living micro-organisms. Cambridge University Press, New YorkGoogle Scholar
  58. Nicholson SE (1981) Rainfall and atmospheric circulation during drought periods and wetter years in West Africa. Mon Wea Rev 109:2191–2208CrossRefGoogle Scholar
  59. Nicholson SE (1993) An overview of African rainfall fluctuations of the last decade. J Climate 6:1463–1466CrossRefGoogle Scholar
  60. Nicholson SE (2006) Monsoon systems and continental rainfall over equatorial Africa. In: Proceedings of 8 ICSHMO, Foz do Iguaçu, Brazil, INPE, April, pp 24–28Google Scholar
  61. Nordhaus W (2007) Critical assumptions in the stern review on climate change. Science 317:201–202CrossRefGoogle Scholar
  62. Null J (2004) El Niño & La Niña years: a consensus list. Golden Gate Weather Services, Oct,
  63. Ornstein L (1967) The population explosion, conservative eugenics and human evolution. Biosciences 17:461–464, CrossRefGoogle Scholar
  64. Ornstein L (1980) US Patent 4,182,357 January 8, 1980,
  65. Ornstein L (1987) Tenuous but contingent connections. Electrophoresis 8:3–13, CrossRefGoogle Scholar
  66. Ornstein L (2009) Replacing coal with wood to end global warming: sustainable, eco-neutral, conservation harvest of natural tree fall in old-growth forests: an editorial essay. Clim Change. doi: 10.1007/s10584-009-9625-z Google Scholar
  67. Ornstein L, Aleinov I, Rind D (2008) QuickTime animations.*
  68. Patricola CM, Cook KH (2007) Dynamics of West African Monsoon under Mid-Holocene precessional forcings: regional climate model simulations. J Clim 20:649–716CrossRefGoogle Scholar
  69. Powers RF (1999) On the sustainability of planted forests. New Forests 17:263–306CrossRefGoogle Scholar
  70. Rind D, Lerner J, Jonas J, McLinden C (2007) Effects of resolution and model physics on tracer transports in the NASA goddard institute for space studies general circulation models. J Geophys Res 112:D09315CrossRefGoogle Scholar
  71. Rodwell MJ, Folland CK (2003) Atlantic air–sea interaction and model validation. Ann Geophys 46:47–56Google Scholar
  72. Rosenzweig C, Abramopoulos F (1997) Land-surface model development for the GISS GCM. J Clim 10:2040–2054CrossRefGoogle Scholar
  73. Russell GL, Miller JR, Rind D (1995) A coupled atmosphere–ocean model for transient climate change studies. Atmos Ocean 33:683–730Google Scholar
  74. Santer BD, Thorne PW, Hamberger L, Taylor KE, Wigley TML, Lanzante JR, Solomon S, Free M, Gleckler PJ, Jones PD, Karl TR, Klein SA, Mears C, Nychaka D, Schmidt GA, Sherwood SC, Wentz FJ (2008) Consistency of modelled and observed temperature trends in the tropical troposphere. Int J Climatol 28:1703–1722. doi: 10.1002/joc.1756 CrossRefGoogle Scholar
  75. Santos AMP, Kazmin AS, Peliz A (2005) Decadal changes in Canary upwelling system as revealed by satellite observations: their impact on productivity. J Marine Res 63:359–379CrossRefGoogle Scholar
  76. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz Ja, Perlwitz Ju, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao MS (2006) Present day atmospheric simulations using GISS ModelE: comparison to in-situ, satellite and reanalysis data. J Climate 19:153–192, CrossRefGoogle Scholar
  77. Service RF (2006) Desalination freshens up. Science 313:1088–1090CrossRefGoogle Scholar
  78. Stape JL, Binkley D, Ryan MG (2004a) Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. For Ecol Man 193:17–31CrossRefGoogle Scholar
  79. Stape JL, Ryan MG, Binkley D (2004b) Testing the utility of the 3-PG model for growth of Eucalyptus grandis × urophylla with natural and manipulated supplies of water and nutrients. For Ecol Man 193:219–234CrossRefGoogle Scholar
  80. Stern N, Taylor C (2007) Climate change: risk, ethics and the stern review. Science 317:203–204CrossRefGoogle Scholar
  81. Thompson C (2007) Motorhead messiah. Fast Company 120:74, Google Scholar
  82. Titchner HA, Thorne PW, McCarthy MP, Tett SFB (2009) Critically reassessing tropospheric temperature trends from radiosondes using realistic validation experiments. J Climate 22:465–483CrossRefGoogle Scholar
  83. Vizy EK, Cook KH (2001) Mechanisms by which Gulf of Guinea and Eastern North Atlantic sea surface temperature anomalies can influence African rainfall. J Clim 14:795–821CrossRefGoogle Scholar
  84. Wikipedia (2009a) Nile.
  85. Wikipedia (2009c) Ecological footprint.
  86. Wikipedia (2009d) Renewable resources.
  87. Willoughby HE (2007) Forecasting hurricane intensity and impacts. Science 315:1232–1233CrossRefGoogle Scholar
  88. Zipser E (2006) A nursery for hurricanes. Univ. Utah News Report, Aug. 8,–2
  89. Zuppi GM, Sacchi E (2004) Hydrology as a climate recorder: Sahara–Sahel (North Africa) and the Po Plain (Northern Italy). Glob Planet Change 40:79–91CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of PathologyMount Sinai School of MedicineNew YorkUSA
  2. 2.White PlainsUSA
  3. 3.Earth InstituteColumbia UniversityNew YorkUSA
  4. 4.NASA Goddard Institute for Space StudiesNew YorkUSA
  5. 5.Department of Earth and Environmental ScienceColumbia UniversityNew YorkUSA

Personalised recommendations