Advertisement

Climatic Change

, Volume 95, Issue 3–4, pp 363–368 | Cite as

Carbon cycle amplification: how optimistic assumptions cause persistent underestimates of potential climate damages and mitigation needs

An Editorial Comment
  • Paul A. T. HigginsEmail author
Article

Keywords

Glob Chang Biol Physical Science Basis Optimistic Assumption Carbon Cycle Feedback Manage Climate Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387(6635):796–799CrossRefGoogle Scholar
  2. Clark JS (1998) Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am Nat 152:204–224CrossRefGoogle Scholar
  3. Clark JS, Lewis M, McLachlan JS, HilleRisLambers J (2003) Estimating population spread: what can we forecast and how well? Ecology 84(8):1979–1988CrossRefGoogle Scholar
  4. Clarke L, Edmonds J, Jacoby HD, Pitcher H, Reilly JM, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1A of synthesis and assessment product 2.1 by the U.S. climate change science program and the subcommittee on global change research. Department of Energy, Office of Biological & Environmental Research, Washington, DCGoogle Scholar
  5. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tigner M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  6. Dukes JS, Chiariello NR, Cleland E, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3(10):e319CrossRefGoogle Scholar
  7. Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678CrossRefGoogle Scholar
  8. Field CB, Avissar R (1998) Bidirectional interactions between the biosphere and the atmosphere - introduction. Glob Chang Biol 4(5):459–460CrossRefGoogle Scholar
  9. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353CrossRefGoogle Scholar
  10. Higgins PAT, Harte J (2006) Biophysical and biogeochemical responses to climate change depend on dispersal and migration. Bioscience 56(5):407–417CrossRefGoogle Scholar
  11. Higgins SI, Richardson DM (1999) Predictiong plant migration rates in a changing world: the role of long-distance dispersal. Am Nat 153(5):464–475CrossRefGoogle Scholar
  12. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon AM, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  13. Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309(5739):1360–1362CrossRefGoogle Scholar
  14. Lashof DA, DeAngelo BJ, Saleska SR, Harte J (1997) Terrestrial ecosystem feedbacks to global climate change. Annu Rev Energy Environ 22:75–118CrossRefGoogle Scholar
  15. Malcolm JR, Markham A, Neilson RP, Garaci M (2002) Estimated migration rates under scenarios of global climate change. J Biogeogr 29:835–849CrossRefGoogle Scholar
  16. McLachlan JS, Clark JS (2004) Reconstructing historical ranges with fossil data at continental scales. For Ecol Manag 197(2004):139–147CrossRefGoogle Scholar
  17. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon AM, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  18. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. PNAS 102(50):18052–18056CrossRefGoogle Scholar
  19. Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2- do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162(2):253–280CrossRefGoogle Scholar
  20. Pielke R, Avissar R, Raupach M, Dolman A, Zeng X, Denning A (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Chang Biol 4(5):461–475CrossRefGoogle Scholar
  21. Saleska SR, Shaw MR, Fischer ML, Dunne JA, Still CJ, Holman ML, Harte J (2002) Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Glob Biogeochem Cycles 16(4):1055CrossRefGoogle Scholar
  22. Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275(5299):502–509CrossRefGoogle Scholar
  23. Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298(5600):1987–1990CrossRefGoogle Scholar
  24. Solomon AM, Kirilenko AP (1997) Climate change and terrestrial biomass: what if trees do not migrate? Glob Ecol Biogeogr Lett 6:139–148CrossRefGoogle Scholar
  25. Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29(6):551–554CrossRefGoogle Scholar
  26. Van Minnen JG, Leemans R, Ihle F (2000) Defining the importance of including transient ecosystem responses to simulate C-cycle dynamics in a global change model. Glob Chang Biol 6(6):595–611CrossRefGoogle Scholar
  27. Zhang N, Shugart HH, Xiaodong YX (2009) Simulating the effects of climate changes on Eastern Eurasia Forests. Climatic change. doi: 10.1007/s10584-009-9568-4

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.American Meteorological SocietyWashingtonUSA

Personalised recommendations