Advertisement

Climatic Change

, Volume 97, Issue 1–2, pp 229–252 | Cite as

A forced response to twentieth century climate conditions of two Spanish forests inferred from widths and stable isotopes of tree rings

  • Octavi PlanellsEmail author
  • Emilia Gutiérrez
  • Gerhard Helle
  • Gerhard H. Schleser
Article

Abstract

This dendroclimatological research is based on two close pine forests (Pinus sylvestris and Pinus uncinata) located at the Northern Iberian System (Spain), and three tree-ring variables (ring widths, δ 13C and δ 18O). The climate-tree growth system was assessed at local and regional scales using three climate datasets. Calibration of tree-ring records with climate showed a diversity of information recorded in the different variables, such as a general response to temperature and precipitation of current growing period, and an important contribution of previous year conditions understood as the use of food reserves. The analysis of the stability of climate-tree growth relationships throughout the twentieth century showed a shift of those climatic variables to which trees responded and results suggested an enhancement of reserve use on current tree growth. The results obtained in this research made clear a physiological adaptation of trees to changing climate. The results provided hints that the recent warming coupled to slight precipitation decay are forcing growth of studied trees to a higher stress status and to a higher climate-growth synchronisation. These instabilities also have implications on future dendroclimatic reconstructions performed with trees growing under changing environments.

Keywords

Tree Growth Tree Ring Ring Width Tree Ring Cellulose Response Function Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allue JL (1990) Atlas Fitoclimático de España. Ministerio de Agricultura, Pesca y Ramadería, Instituto Nacional de Investigaciones Agrarias, MadridGoogle Scholar
  2. Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Chang Biol 13:804–815Google Scholar
  3. Andreu L, Planells O, Gutiérrez E, Helle G, Schleser GH (2008) The climatic significance of tree-ring width and δ 13C in a Spanish pine forest network. Tellus 60:771–781CrossRefGoogle Scholar
  4. Becker B, Kromer B, Trimborn P (1991) A stable-isotope tree-ring timescale of late Glacial/Holocene boundary. Nature 353:647–649CrossRefGoogle Scholar
  5. Biondi F (2000) Are climate-tree growth relationships changing in North-Central Idaho, U.S.A.? Arct Antarct Alp Res 32:111–116CrossRefGoogle Scholar
  6. Biondi F, Waikul K (2004) DENDROCLIM 2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311CrossRefGoogle Scholar
  7. Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR (2002) 13C content of ecosystem respiration is linked to precipitation and vapour pressure deficit. Oecologia 131:113–124CrossRefGoogle Scholar
  8. Brendel O, Pot D, Plomion C, Rozenberg P, Guehl J-M (2002) Genetic parameters and QTL analysis of δ 13C and ring width in maritime pine. Plant Cell Environ 25:945–953CrossRefGoogle Scholar
  9. Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat Sci Rev 19:87–105CrossRefGoogle Scholar
  10. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682CrossRefGoogle Scholar
  11. Camarero JJ, Guerrero-Campo J, Gutiérrez E (1996) Fenología del anillo de crecimiento de Pinus uncinata Ramond y Pinus sylvestris L. en un gradiente altitudinal en los Pirineos centrals. Pirineos 147–148:3–26Google Scholar
  12. Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arct Anctarct Alp Res 30:1–10CrossRefGoogle Scholar
  13. Castells X, Gutiérrez E, Camarero JJ, Llorens P (2000) Fenologia i creixement de Pinus uncinata Ram. i Pinus sylvestris L. als Pirineus centrals durant 1997–2000. V Jornades sobre recerca al parc natural d’Aigüestortes i Estany de Sant Maurici 5Google Scholar
  14. Cherubini P, Gartner BL, Tognetti R, Bräker OU, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol Rev 78:119–148CrossRefGoogle Scholar
  15. Cook ER, Briffa KR (1990) Data analysis. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Kluwer, Dordrecht, pp 97–162Google Scholar
  16. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-RW series for dendroclimatic studies. Tree-Ring Bull 41:45–53Google Scholar
  17. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370CrossRefGoogle Scholar
  18. Cropper JP (1984) Multicollinearity within selected western North American temperature and precipitation data sets. Tree-Ring Bull 44:29–37Google Scholar
  19. Damesin C, Lelarge C (2003) Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant Cell Environ 26:207–219CrossRefGoogle Scholar
  20. Douglass AE (1914) A method of estimating rainfall by the growth of trees. In: Huntingdon E (ed) The climatic factor. Carnegie Institute, Washington, DC, pp 101–122Google Scholar
  21. Efron B (1979) Bootstrap methods; another look at the jackknife. Ann Stat 7:1–26CrossRefGoogle Scholar
  22. February EC, Stock WD (1999) Declining trend in the 13C/12C ratio of atmospheric carbon dioxide from tree rings of South African Widdringtonia cedarbergensis. Quat Res 52:229–236CrossRefGoogle Scholar
  23. Ferrio JP, Voltas J (2005) Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B 57:164–173CrossRefGoogle Scholar
  24. Ferrio JP, Florit A, Vega A, Serrano L, Voltas J (2003) Δ13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia 137:512–518CrossRefGoogle Scholar
  25. Francey RJ, Farquhar GD (1982) An explanation of 13C/12C variations in tree rings. Nature 297:28–31CrossRefGoogle Scholar
  26. Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langefelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of δ 13C in atmospheric CO2. Tellus B 51:170–193CrossRefGoogle Scholar
  27. Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238CrossRefGoogle Scholar
  28. Fritts HC (1976) Tree rings and climate. Academic, LondonGoogle Scholar
  29. Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188CrossRefGoogle Scholar
  30. Gagen M, McCarroll D, Edouard J-L (2004) Latewood width, maximum density, and stable carbon isotope ratios of pine as climate indicators in a dry subalpine environment, French Alps. Arct Antarct Alp Res 36:166–171CrossRefGoogle Scholar
  31. Glerum C, Balatinecz JJ (1980) Formation and distribution of food reserves during autumn and their subsequent utilization in jack pine. Can J Bot 58:40–54Google Scholar
  32. Guiot J (1991) The bootstrapped response function. Tree-Ring Bull 51:39–41Google Scholar
  33. Gutiérrez E (1991) Climate tree-growth relationships for Pinus uncinata Ram. in the Spanish pre-Pyrenees. Acta Oecol 12:213–225Google Scholar
  34. Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco—an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27:367–380CrossRefGoogle Scholar
  35. Hill SA, Waterhouse JS, Field EM, Switsur VR, Ap Rees T (1995) Rapid recycling of triose phosphates in oak stem tissue. Plant Cell Environ 18:931–936Google Scholar
  36. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–75Google Scholar
  37. IAEA (1995) TECDOC-825: reference and intercomparison materials for stable isotopes of light elements. In: Proceedings of a consultants meeting, 1–3 December 1993, ViennaGoogle Scholar
  38. Jäggi M, Saurer M, Fuhrer J, Siegwolf R (2003) Seasonality of δ 18O in needles and wood of Picea abies. New Phytol 158:51–59CrossRefGoogle Scholar
  39. Keeling CD, Mook WG, Tans PP (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277:121–123CrossRefGoogle Scholar
  40. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monogr 1:1–17Google Scholar
  41. Kozlowski TT, Pallardy SG (1997) Physiology of woody plants. Academic, San DiegoGoogle Scholar
  42. Kozlowski TT, Winget CH (1964) The role of reserves in leaves, branches, stems, and roots on shoot growth of red pine. Am J Bot 51:522–529CrossRefGoogle Scholar
  43. Kozlowski TT, Kramer PJ, Pallardy SG (1991) The ecophysiological ecology of woody plants. Academic, San DiegoGoogle Scholar
  44. Leavitt SW, Long A (1984) Sampling strategy for stable carbon isotope analysis of tree rings in pine. Nature 311:145–147CrossRefGoogle Scholar
  45. Li MH, Hoch G, Körner C (2002) Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees-Struct Funct 16:331–337Google Scholar
  46. Li Y, Chen T, Zhang Y, An L (2007) The relation of seasonal pattern in stable carbon compositions to meteorological variables in the leaves of Sabina przewalskii Kom. and Sabina chinensis (Lin.) Ant. Environ Geol 51:1279–1284CrossRefGoogle Scholar
  47. Lipp J, Trimborn P, Fritz P, Moser H, Becker B, Frenzel B (1991) Stable isotopes in tree ring cellulose and climatic change. Tellus 43:322–330CrossRefGoogle Scholar
  48. Liu X, Shao X, Liang E, Zhao L, Chen T, Qin D, Ren J (2007) Species-dependent responses of juniper and spruce to increasing CO2 concentration and to climate in semi-arid and arid areas of northwestern China. Plant Ecol 193:195–209CrossRefGoogle Scholar
  49. Loader NJ, Switsur VR (1995) Reconstructing past environmental change using stable isotopes in tree-rings. Bot J Scotl 48:65–78CrossRefGoogle Scholar
  50. Macias M, Andreu L, Bosch O, Camarero JJ, Gutiérrez E (2006) Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its South-Western distribution limit. Clim Change 79:289–313CrossRefGoogle Scholar
  51. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  52. Martín-Vide J, Olcina-Cantos J (2001) Climas y Tiempos de España. Alianza, MadridGoogle Scholar
  53. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  54. McCarroll D, Pawellek F (2001) Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11(5):517–526CrossRefGoogle Scholar
  55. Meehl GA, Washington WM, Wigley TML, Arblaster JM, Dai A (2003) Solar and greenhouse gas forcing and climate response in the twentieth century. J Clim 16:426–444CrossRefGoogle Scholar
  56. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659CrossRefGoogle Scholar
  57. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewsko FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remisová V, Scheifinger H, Srtiz M, Suskin A, VanVliet AJH, Wielgolaski F-E, Zach S, Zust A, et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976CrossRefGoogle Scholar
  58. Oberhuber W, Kofler W (2003) Effects of climate and slope aspect on radial growth of Cembran pine (Pinus cembra L.) at the alpine timberline ecotone on Mt. Patscherkofel (Tyrol, Austria). Austrian Journal of Forest Science 1:39–50Google Scholar
  59. Oberhuber W, Kofler W, Pfeifer K, Seeber A, Gruber A, Wieser G (2007) Long-term changes in tree-ring-climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees-Struct Funct 22:31–40Google Scholar
  60. Ortega MT (1992) El Clima del Sector Norte de la Cordillera Ibérica. Estudio Geográfico de la Sierra de la Demanda a la del Moncayo. Universidad de Valladolid, ValladolidGoogle Scholar
  61. Panek JA, Waring RH (1997) Stable carbon isotopes as indicators of limitations to forest growth imposed by climate stress. Ecol Appl 7:854–863CrossRefGoogle Scholar
  62. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  63. Peñuelas J, Filella I (2001) Responses to warming world. Science 294:793–795CrossRefGoogle Scholar
  64. Pilcher JR, Baillie MGL, Scmhitt B, Becker B (1984) A 7272-year tree-ring chronology for western Europe. Nature 312:150–152CrossRefGoogle Scholar
  65. Planells O, Andreu L, Bosch O, Gutiérrez E, Filot M, Leuenberger M, Helle G, Schleser GH (2005) The potential of stable isotopes to record aridity conditions in a forest with low-sensitive ring widths from the Eastern Pre-Pyrenees. TRACE—Tree Rings in Archaeology, Climatology and Ecology 4:266–272Google Scholar
  66. Reynolds-Henne CE, Siegwolf RTW, Treydte KS, Esper J, Henne S, Saurer M (2007) Temporal stability of climate–isotope relationships in tree rings of oak and pine (Ticino, Switzerland). Glob Biogeochem Cycles 21:GB4009.1–GB4009.12. doi: 10.1029/2007GB002945 CrossRefGoogle Scholar
  67. Richter K, Eckstein D, Holmes RL (1991) The dendrochronological signal of pine trees (Pinus spp.) in Spain. Tree-Ring B 51:1–13Google Scholar
  68. Robertson I, Rolfe J, Switsur VR, Carter AHC, Hall MA, Barker AC, Waterhouse JS (1997a) Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in southwest Finland. Geophys Res Lett 24:1487–1490CrossRefGoogle Scholar
  69. Robertson I, Switsur VR, Carter AHC, Barker AC, Waterhouse JS, Briffa KR, Jones PD (1997b) Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in east England. J Geophys Res 102:19507–19516CrossRefGoogle Scholar
  70. Sarris D, Christodoulakis D, Körner C (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Chang Biol 13:1187–1200CrossRefGoogle Scholar
  71. Saurer M, Borella S, Leuenberger M (1997) δ 18O of tree rings of beech (Fagus sylvatica) as a record of δ 18O of the growing season precipitation. Tellus B 49:80–92CrossRefGoogle Scholar
  72. Saurer M, Cherubini P, Siegwolf R (2000) Oxygen isotopes in tree rings of Abies alba: the climatic significance of interdecadal variations. J Geophys Res 105:12461–12470CrossRefGoogle Scholar
  73. Schweingruber FH (1988) Tree rings: basics and applications of dendrochronology. Kluwer, DordrechtGoogle Scholar
  74. Schweingruber FH (1996) Tree rings and environment dendroecology. Paul Haupt, BernGoogle Scholar
  75. Siegenthaler U, Oeschger H (1987) Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus B 39:140–154CrossRefGoogle Scholar
  76. Sohn AW, Reiff F (1942) Natriumchlorit als Aufschlußmittel. Der Papierfabrikant 2:5–7Google Scholar
  77. Sternberg LSL, Anderson WT, Morrison K (2003) Separating soil and leaf water 18O isotopic signals in plant stem cellulose. Geochim Cosmochim Acta 67:2561–2566CrossRefGoogle Scholar
  78. Stuiver M (1978) Atmospheric carbon dioxide and carbon reservoir changes. Science 199:253–259CrossRefGoogle Scholar
  79. Tardif J, Camarero JJ, Ribas M, Gutiérrez E (2003) Spatiotemporal variability in tree growth in the Central Pyrenees: climatic and site influences. Ecol Monogr 73:241–257CrossRefGoogle Scholar
  80. Treydte K, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of δ 13C in subalpine spruces (Lötschental, Swiss Alps). A case study with respect to altitude, exposure and soil moisture. Tellus B 53:593–611Google Scholar
  81. Vanderklein DW, Reich PB (1999) The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits. New Phytol 144:121–132CrossRefGoogle Scholar
  82. von Felten S, Hättenschwiler S, Saurer M, Siegwolf R (2007) Carbon allocation in shoots of alpine treeline conifers in a CO2 enriched environment. Trees-Struct Funct 21:283–294Google Scholar
  83. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  84. Warren CR, McGrath JF, Adams MA (2001) Water availability and carbon isotope discrimination in conifers. Oecologia 127:476–486CrossRefGoogle Scholar
  85. Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Robertson I (2002) Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth Planet Sci Lett 201:421–430CrossRefGoogle Scholar
  86. Wiesberg L (1974) Die 13C-Abnahme in Holz von Baumjahresringen. Eine Untersuchung zur anthropogenen Beeinflussung des CO2-Haushaltes der Atmosphäre. Thesis, Rheinisch Westfälische Technische Hochschule AachenGoogle Scholar
  87. Wilson AT, Grinsted MJ (1977) 12C/13C in cellulose and lignin as paleothermometers. Nature 265:133–135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Octavi Planells
    • 1
    Email author
  • Emilia Gutiérrez
    • 1
  • Gerhard Helle
    • 2
  • Gerhard H. Schleser
    • 2
  1. 1.Ecology Department, Faculty of BiologyUniversitat de BarcelonaBarcelonaSpain
  2. 2.Deutsches GeoForschungszentrum Potsdam, Sektion 5.2 Climate Dynamics and Landscape EvolutionPotsdamGermany

Personalised recommendations