Climatic Change

, Volume 97, Issue 1–2, pp 145–170 | Cite as

Value of perfect ENSO phase predictions for agriculture: evaluating the impact of land tenure and decision objectives

  • David Letson
  • Carlos E. Laciana
  • Federico E. Bert
  • Elke U. Weber
  • Richard W. Katz
  • Xavier I. Gonzalez
  • Guillermo P. Podestá
Article

Abstract

In many places, predictions of regional climate variability associated with the El Niño–Southern Oscillation phenomenon offer the potential to improve farmers’ decision outcomes, by mitigating the negative impacts of adverse conditions or by taking advantage of favorable conditions. While the notion that climate forecasts are potentially valuable has been established, questions of when they may be more or less valuable have proven harder to resolve. Using simulations, we estimate the expected value of seasonal climate information under alternative assumptions about (a) land tenure (ownership vs. short-term leases) and (b) the decision maker’s objective function (expected utility vs. prospect theory value function maximization), employing a full range of plausible parameter values for each objective function. This allows us to show the extent to which the value of information depends on risk preferences, loss aversion, wealth levels and expectations, as well as situational constraints. Our results demonstrate in a non-laboratory decision context that, in some cases, psychologically plausible deviations from expected utility maximization can lead to substantial differences in estimates of the expected value of climate forecasts. Efforts to foster effective use of climate information and forecasts in agriculture must be grounded in a firm understanding of the goals, objectives and constraints of decision makers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams R, Houston L, McCarl B, Mario Tiscareno M, Matus J, Weiher R (2003) Benefits to Mexican agriculture of an ENSO early warning system. Agric For Meteorol 115:183–194CrossRefGoogle Scholar
  2. Akerlof G (2001) Writing “The market for lemons”: a personal and interpretive essay. Nobel Economics Lecture. http://nobelprize.org/nobel_prizes/economics/articles/akerlof/index.html. Accessed 12 May 2007
  3. Akerlof G (2007) Missing motivations in macroeconomics. Am Econ Rev 97(1):5–36CrossRefGoogle Scholar
  4. Amissah-Arthur A, Jagtap S, Rosenzweig C (2002) Spatio-temporal effects of El Niño events on rainfall and maize yield in Kenya. Int J Climatol 22:1849–1860CrossRefGoogle Scholar
  5. Argentine Census of Agriculture (2002) http://www.indec.gov.ar/default_cna2002.htm. Accessed 17 June 2008
  6. Bert F, Satorre E, Ruiz Toranzo F, Podestá G (2006) Climatic information and decision-making in maize crop production systems of Argentinean Pampas. Agric Syst 88:180–204CrossRefGoogle Scholar
  7. Bert F, Podestá G, Satorre E, Messina C (2007) Usability of climate information on decisions related to soybean production systems of Argentine Pampas. Clim Res 33:123–143CrossRefGoogle Scholar
  8. Bond S, Carlson K, Keeney R (2008) Generating objectives: can decision makers articulate what they want? Manage Sci 54:56–70CrossRefGoogle Scholar
  9. Camerer C (1981) General conditions for the success of bootstrapping models. Organ Behav Hum Perform 27:441–422CrossRefGoogle Scholar
  10. Camerer C (2000) Prospect theory in the wild. In: Kahneman D, Tversky A (eds) Choice, values and frames. Cambridge University Press, Cambridge, pp 288–300Google Scholar
  11. Changnon S, Kunkel K (1999) Rapidly expanding uses of climate data and information in agriculture and water resources: causes and characteristics of new applications. Bull Am Meteorol Soc 80:821–830CrossRefGoogle Scholar
  12. Dawes R (1971) A case study of graduate school admissions: application of three principles of human decision making. Am Psychol 26:180–188CrossRefGoogle Scholar
  13. Dawes R, Faust D, Meehl P (1989) Clinical vs actuarial judgment. Science 243:1668–1673CrossRefGoogle Scholar
  14. Dilley M (1997) Climatic factors affecting annual maize yields in the Valley of Oaxaca, Mexico. Int J Climatol 17:1549–1557CrossRefGoogle Scholar
  15. Ebert R, Kruse T (1978) Bootstrapping the security analyst. J Appl Psychol 63:110–119CrossRefGoogle Scholar
  16. Fennema H, Wakker P (1997) Original and cumulative prospect theory: a discussion of empirical differences. J Behav Decis Mak 10(1):53–64CrossRefGoogle Scholar
  17. Ferreyra R, Podestá G, Messina C, Letson D, Dardanelli J, Guevara E, Meira S (2001) A linked-modeling framework to estimate maize production risk associated with ENSO related climate variability in Argentina. Agric For Meteorol 107:177–192CrossRefGoogle Scholar
  18. Fuglie K, Heisey P (2007) Economic returns to public agricultural research. EB-10, US Department of Agriculture, Economic Research ServiceGoogle Scholar
  19. Furrer E, Katz R (2007) Generalized linear modeling approach to stochastic weather generators. Clim Res 34:129–144CrossRefGoogle Scholar
  20. Gill P, Murray W, Murtagh B, Saunders M, Wright M (2000) GAMS/MINO. In: GAMS—the solver manuals. GAMS Development Corporation, Washington, DCGoogle Scholar
  21. Gimeno L, Ribera P, Iglesias R, de la Torre L, García R, Hernández E (2002) Identification of empirical relationships between indices of ENSO and NAO and agricultural yields in Spain. Clim Res 21:165–172CrossRefGoogle Scholar
  22. Glantz M (2000) Currents of change: El Niño’s impact on climate and society, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  23. Goddard L, Mason S, Zebiak S, Ropelewski C, Basher R, Cane M (2001) Current approaches to seasonal-to-interannual climate predictions. Int J Climatol 21:1111–1152CrossRefGoogle Scholar
  24. Grondona M, Podestá G, Bidegain M, Marino M, Hordij H (2000) A stochastic precipitation generator conditioned on ENSO phase. J Clim 13:2973–2986CrossRefGoogle Scholar
  25. Guevara E, Meira S, Maturano M, Coco G (1999) Maize simulation for different environments in Argentina. In: International symposium: modelling cropping systems. european society of agronomy. University of Lleida, Catalonia, Spain, pp 193–194Google Scholar
  26. Hall A, Rebella C, Ghersa C, Culot J (1992) Field crops systems of the Pampas. In: Pearson C (ed) Field crops systems: ecosystems of the world, vol 18. Elsevier, Amsterdam, pp 413–449Google Scholar
  27. Hammer G, Hansen J, Phillips J, Mjelde J, Hill H, Love H, Potgieter A (2001) Advances in application of climate prediction in agriculture. Agric Syst 70:515–553CrossRefGoogle Scholar
  28. Hansen J (2002) Realizing the potential benefits of climate prediction to agriculture. Agric Syst 74(3):309–330CrossRefGoogle Scholar
  29. Hardaker J, Huirne R, Anderson J, Lien G (2004) Coping with risk in agriculture. CABI, Cambridge, MA, p 332Google Scholar
  30. Harwood J, Heifner R, Coble K, Perry J, Somwaru A (1999) Managing risks in farming. USDA/ERS AER 774Google Scholar
  31. Hsieh W, Tang B, Garnett E (1999) Teleconnections between Pacific sea surface temperatures and Canadian prairie wheat yield. Agric For Meteorol 96:209–217CrossRefGoogle Scholar
  32. Huffman W, Evenson R (2006) Science for agriculture: a long-term perspective, 2nd edn. Blackwell, Ames, IAGoogle Scholar
  33. Jochec K, Mjelde J, Lee A, Conner J (2001) Use of seasonal climate forecasts in rangeland-based livestock operations in West Texas. J Appl Meteorol 40:1629–1639CrossRefGoogle Scholar
  34. Jones J, Tsuji G, Hoogenboom G, Hunt L, Thornton P, Wilkens P, Imamura D, Bowen W, Singh U (1998) Decision support system for agrotechnology transfer. In: Tsuji G, Hoogenboom G, Thornton P (eds) Understanding options for agricultural production. Kluwer, Dordrecht, The Netherlands, pp 157–177Google Scholar
  35. Jones J, Hansen J, Royce F, Messina C (2000) Potential benefits of climate forecasting to agriculture. Agric Ecosyst Environ 82(1–3):169–1684CrossRefGoogle Scholar
  36. Kahneman D (2003) Perspective on judgment and choice. Am Psychol 58:697–720CrossRefGoogle Scholar
  37. Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47:263–292CrossRefGoogle Scholar
  38. Keeney R (1992) Value-focused thinking. Harvard University Press, Cambridge, MAGoogle Scholar
  39. Kite-Powell H, Solow A (1994) A Bayesian approach to estimating benefits of improved forecasts. Meteorol Appl 1:351–354CrossRefGoogle Scholar
  40. Landsea C, Knaff J (2000) How much skill was there in forecasting the very strong 1997–1998 El Niño? Bull Am Meteorol Soc 81:2107–2119CrossRefGoogle Scholar
  41. Leteinturier B, Herman J, Longueville F, Quintin L, Oger R (2006) Adaptation of a crop sequence indicator based on a land parcel management system. Agric Ecosyst Environ 112:324–334CrossRefGoogle Scholar
  42. Letson D, Llovet I, Podesta G, Royce F, Brescia V, Lema D, Parellada G (2001) User perspectives of climate forecasts: crop producers in Pergamino, Argentina. Clim Res 19:57–67CrossRefGoogle Scholar
  43. Letson D, Podestá G, Messina C, Ferreyra R (2005) The uncertain value of perfect ENSO phase forecasts. Clim Change 69:163–196CrossRefGoogle Scholar
  44. List J (2003) Does market experience eliminate market anomalies? Quart J Econ 118:41–71CrossRefGoogle Scholar
  45. McFadden D (1999) Rationality for economists? J Risk Uncertain 19:73–105CrossRefGoogle Scholar
  46. Mason S, Goddard L, Graham N, Yulaeva V, Sun L, Arkin P (1999) IRI seasonal climate prediction system and the 1997/98 Niño. Bull Am Meteorol Soc 80:1853–1873CrossRefGoogle Scholar
  47. Meinke H, Nelson R, Kokic P, Stone R, Selvaraju R, Baethgen W (2006) Actionable climate knowledge: from analysis to synthesis. Clim Res 33:101–110CrossRefGoogle Scholar
  48. Meira S, Baigorri E, Guevara E, Maturano M (1999) Calibration of soybean cultivars for two environments in Argentina. global soy forum. Chicago, Aug 4–7Google Scholar
  49. Mercau J, Dardanelli J, Collino D, Andriani J, Irigoyen A, Satorre E (2007) Predicting on-farm soybean yields in the Pampas using CROPGRO-soybean. Field Crop Res 100:200–209CrossRefGoogle Scholar
  50. Messina C, Hansen J, Hall A (1999) Land allocation conditioned on ENSO phases in the Argentine Pampas. Agric Syst 60:197–212CrossRefGoogle Scholar
  51. Meza F, Hansen J, Osgood D (2008) Economic value of seasonal climate forecasts for agriculture: review of ex-ante assessments and recommendations for future research. J Appl Meteorol Climatol 47:1269–1286CrossRefGoogle Scholar
  52. Naylor R, Falcon W, Rochberg D, Wada N (2001) Using ENSO climate data to predict rice production in Indonesia. Clim Change 50:255–265CrossRefGoogle Scholar
  53. Paruelo J, Sala O (1993) Global change effects on Argentine maize. Clim Res 3:161–167CrossRefGoogle Scholar
  54. Pielke R Jr, Sarewitz D, Byerly R Jr (2000) Decision making and the future of nature. In: Sarewitz D, Pielke R Jr, Byerly R Jr (eds) Prediction: science, decision making and the future of nature. Island Press, Covelo, CA, pp 361–387Google Scholar
  55. Podestá G, Messina C, Grondona M, Magrin G (1999) Associations between grain yields in central-eastern Argentina and ENSO. J Appl Meteorol 38:1488–1498CrossRefGoogle Scholar
  56. Podestá G, Letson D, Messina C, Royce F, Ferreyra R, Jones J, Hansen J, Llovet I, Grondona M, O’Brien J (2002) Use of ENSO-related climate information in agricultural decision making in Argentina. Agric Syst 74:371–392CrossRefGoogle Scholar
  57. Podestá, GP, Weber EU, Laciana C, Bert F, Letson D (2008) Agricultural decision-making in the Argentine Pampas: modeling the interaction between uncertain and complex environments and heterogeneous and complex decision makers. In: Kugler T, Smith JC, Connolly T, Son Y-J (eds) Decision modeling and behavior in uncertain and complex environments. Springer optimization and its applications, vol 21, pp 57–78Google Scholar
  58. Pratt J (1964) Risk aversion in the small and in the large. Econometrica 32:122–136CrossRefGoogle Scholar
  59. Rabin M (1998) Psychology and economics. J Econ Lit 36:11–46Google Scholar
  60. Royce F, Jones J, Hansen J (2001) Model-based optimization of crop management for climate forecast applications. Trans ASAE 44(5):1319–1327Google Scholar
  61. Rubas D, Hill H, Mjelde J (2006) Economics and climate applications: exploring the frontier. Clim Res 33:43–54CrossRefGoogle Scholar
  62. Samuelson P (2004) Personal communication. http://www.sjdm.org/mail-archive/jdm-society/2004-May/001854.html. Accessed 16 July 2008
  63. Sassone P, Weiher R (1999) Cost–benefit analysis of TOGA and the ENSO observing system. In: Weiher R (ed) Improving El Niño forecasting: the potential economic benefits. NOAA: office of policy and strategic planning. p 47. http://ioc.unesco.org/goos/el_nino.pdf. Accessed 16 June 2008
  64. Schmidt U, Zank H (2005) What is loss aversion? J Risk Uncertain 30:157–167CrossRefGoogle Scholar
  65. Schoemaker P, Russo J (1993) Pyramid of decision approaches’ California management review reprint series 36(1):9–31Google Scholar
  66. Schultz T (1964) Transforming traditional agriculture. Yale University Press, New HavenGoogle Scholar
  67. Shaw W, Woodward R (2008) On why environmental and resource economists should care about non-expected utility models. Resour Energy Econ 30:66–89CrossRefGoogle Scholar
  68. Slovic P, Lichtenstein S (1968) The relative importance of probabilities and payoffs in risk taking. J Exp Psychol Monogr 78:1–18CrossRefGoogle Scholar
  69. Trenberth K (1997) Short-term climate variations: recent accomplishments and issues for future progress. Bull Am Meteorol Soc 78:1081–1096CrossRefGoogle Scholar
  70. Trenberth K, Stepaniak D (2001) Indices of El Niño evolution. J Clim 14:1697–1701CrossRefGoogle Scholar
  71. Tversky A, Kahneman D (1992) Advances in prospect theory, cumulative representation of uncertainty. J Risk Uncertain 5:297–323CrossRefGoogle Scholar
  72. Weber E (2007) Encuesta AACREA sobre toma decisiones agropecuarias reporte de resultados. AACREA Technical ReportGoogle Scholar
  73. Wrights W (1979) Properties of judgment models in a financial setting. Organ Behav Hum Perform 23:73–85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • David Letson
    • 1
  • Carlos E. Laciana
    • 2
  • Federico E. Bert
    • 3
  • Elke U. Weber
    • 4
  • Richard W. Katz
    • 5
  • Xavier I. Gonzalez
    • 2
  • Guillermo P. Podestá
    • 1
  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  2. 2.Departamento de Hidráulica, Facultad de IngenieríaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Cátedra de Cerealicultura, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina
  4. 4.Department of Psychology and Graduate School of Business, Center for Research on Environmental DecisionsColumbia UniversityNew YorkUSA
  5. 5.Institute for Study of Society and EnvironmentNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations