Advertisement

Climatic Change

, Volume 96, Issue 4, pp 443–466 | Cite as

Evaluating Global Warming Potentials with historical temperature

  • Katsumasa TanakaEmail author
  • Brian C. O’Neill
  • Dmitry Rokityanskiy
  • Michael Obersteiner
  • Richard S. J. Tol
Open Access
Article

Abstract

Global Warming Potentials (GWPs) are evaluated with historical temperature by applying them to convert historical CH4 and N2O emissions to equivalent CO2 emissions. Our GWP analysis is based on an inverse estimation using the Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2). We find that, for both CH4 and N2O, indices higher than the Kyoto GWPs (100-year time horizon) would reproduce better the historical temperature. The CH4 GWP provides a best fit to the historical temperature when it is calculated with a time horizon of 44 years. However, the N2O GWP does not approximate well the historical temperature with any time horizon. We introduce a new exchange metric, TEMperature Proxy index (TEMP), that is defined so that it provides a best fit to the temperature projection of a given period. By comparing GWPs and TEMPs, we find that the inability of the N2O GWP to reproduce the historical temperature is caused by the GWP calculation methodology in IPCC using simplifying assumptions for the background system dynamics and uncertain parameter estimations. Furthermore, our TEMP calculations demonstrate that indices have to be progressively updated upon the acquisition of new measurements and/or the advancement of our understanding of Earth system processes.

Keywords

Global Warming Potential Historical Temperature Optimization Period Inverse Calculation Global Temperature Change Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aaheim A, Fuglestvedt JS, Godal O (2006) Costs savings of a flexible multi-gas climate policy. The Energy Journal. Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, pp 485–501Google Scholar
  2. Ammann CM, Meehl GA, Washington WM, Zender CS (2003) A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys Res Lett 30(12):1657. doi: 10.1029/2003GL016875 CrossRefGoogle Scholar
  3. Balmacela L, Krivova NA, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467:335–346CrossRefGoogle Scholar
  4. Bruckner T, Hooss G, Füssel H-M, Hasselmann K (2003) Climate system modeling in the framework of the Tolerable Windows Approach: the ICLIPS climate model. Clim Change 56:119–137CrossRefGoogle Scholar
  5. Crutzen PJ (2002) Geology of mankind. Nature 415:23CrossRefGoogle Scholar
  6. Eckaus RS (1992) Comparing the effects of greenhouse gas emissions on global warming. Energy J 13:25–35Google Scholar
  7. Etheridge DM, Steele LP, Francey RJ, Langenfelds RL (1998) Atmospheric methane between 1000 AD and present: evidence of anthropogenic emissions and climatic variability. J Geophys Res 103(D13):15979–15993CrossRefGoogle Scholar
  8. Fankhauser S (1995) Valuing climate change: the economics of the greenhouse. EarthScan, London, 176 ppGoogle Scholar
  9. Friedlingstein P, Fung I, Holland E, John J, Brasseur G, Erickson D, Schimel D (1995) On the contribution of CO2 fertilization to the missing biospheric sink. Glob Biogeochem Cycles 9:541–556CrossRefGoogle Scholar
  10. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353CrossRefGoogle Scholar
  11. Fuglestvedt JS, Berntsen TK (1999) A simple model for scenario studies of changes in global climate. CICERO Working Paper 1999:2, University of Oslo, 59 ppGoogle Scholar
  12. Fuglestvedt JS, Berntsen TK, Godal O, Skodvin T (2000) Climate implications of GWP-based reductions in greenhouse gas emissions. Geophys Res Lett 27(3):409–412CrossRefGoogle Scholar
  13. Fuglestvedt JS, Berntsen TK, Godal O, Sausen R, Shine KP, Skodvin T (2003) Metrics of climate change: assessing radiative forcing and emission indices. Clim Change 58:267–331CrossRefGoogle Scholar
  14. Gifford RM (1980) Carbon storage by the biosphere. In: Pearman GI (ed) Carbon dioxide and climate. Australian Academy of Science, Canberra, pp 167–181Google Scholar
  15. Godal O, Fuglestvedt J (2002) Testing 100-year global warming potentials: impacts on compliance costs and abatement profile. Clim Change 52:93–127CrossRefGoogle Scholar
  16. Hansen J, Sato M (2004) Data sets used in GISS 2004 GCM. http://www.giss.nasa.gov/data/simodel/ghgases/GCM.html
  17. Hooss G (2001) Aggregate models of climate change: development and applications. PhD dissertation, Hamburg Universität, 113 pp. http://www.schoepfung-und-wandel.de/
  18. Hooss G, Voss R, Hasselmann K, Maier-Reimer E, Joos F (2001) A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS). Clim Dyn 18:189–202CrossRefGoogle Scholar
  19. IPCC (1990) Climate change: the intergovernmental panel on climate change scientific assessment. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 364 ppGoogle Scholar
  20. IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 ppGoogle Scholar
  21. IPCC (2005) IPCC special report on safeguarding the ozone layer and the global climate system: issues related to hydrofluorocarbons and perfluorocarbons. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 486 ppGoogle Scholar
  22. IPCC (2007) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 ppGoogle Scholar
  23. Johansson DJA, Persson UM, Azar C (2006) The cost of using global warming potentials: analyzing the trade off between CO2, CH4 and N2O. Clim Change 77:291–309CrossRefGoogle Scholar
  24. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) Millennial temperature reconstructions. IGBP PAGES/world data center-A for paleoclimatology data contribution series #1998-039. NOAA/NGDC Paleoclimatology Program, Boulder CO, USAGoogle Scholar
  25. Jones PD, Parker DE, Osborn TJ, Briffa KR (2006) Global and hemispheric temperature anomalies—land and marine instrumental records. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.Google Scholar
  26. Joos F, Bruno M, Fink R, Siegenthaler U, Stocker TF (1996) An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus 48B:397–417Google Scholar
  27. Joos F, Prentice C, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the intergovernmental panel on climate change (IPCC) emission scenarios. Glob Biogeochem Cycles 15:891–907CrossRefGoogle Scholar
  28. Kandlikar M (1996) Indices for comparing greenhouse gas emissions: integrating science and economics. Energy Econ 18:265–281CrossRefGoogle Scholar
  29. Kohlmaier GH, Brohl H, Siré EO, Plőchl M, Reville R (1987) Modelling stimulation of plants and ecosystem response to present levels of excess atmospheric CO2. Tellus 39B:155–179CrossRefGoogle Scholar
  30. Kriegler E (2005) Imprecise probability analysis for integrated assessment of climate change. PhD dissertation, Potsdam Universität, 258 pp. http://www.pik-potsdam.de/~kriegler/
  31. Mackenzie FT, Lerman A (2006) Carbon in the geobiosphere: earth’s outer shell. Springer, Dordrecht, The Netherlands, 402 ppGoogle Scholar
  32. Maier-Reimer E, Hasselmann K (1987) Transport and storage of CO2 in the ocean—an inorganic ocean-circulation carbon cycle model. Clim Dyn 2:63–90CrossRefGoogle Scholar
  33. Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30(15):1820. doi: 10.1029/2003GL017814 CrossRefGoogle Scholar
  34. Manne AS, Richels RG (2001) An alternative approach to establishing trade-offs among greenhouse gases. Nature 410:675–677CrossRefGoogle Scholar
  35. Masarie KA, Langenfelds RL, Allison CE, Conway TJ, Dlugokencky EJ, Francey RJ, Novelli PC, Steele LP, Tans PP, Vaughn B, White JWC (2001) NOAA/CSIRO flask intercomparison project: a strategy for directly assessing consistency among atmospheric measurements made by independent laboratories. J Geophys Res 106(D17):20445–20464CrossRefGoogle Scholar
  36. Millero FJ (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–677CrossRefGoogle Scholar
  37. Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D (2006) Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar Chem 100:80–94CrossRefGoogle Scholar
  38. O’Neill BC (2000) The jury is still out on global warming potentials. Clim Change 44:427–443CrossRefGoogle Scholar
  39. O’Neill BC (2003) Economics, natural science, and the costs of global warming potentials. Clim Change 58:251–260CrossRefGoogle Scholar
  40. O’Neill BC, Oppenheimer M, Gaffin SR (1997) Measuring time in the greenhouse. Clim Change 37:491–503CrossRefGoogle Scholar
  41. Reilly JM, Richards KR (1993) Climate change damage and the trace gas index issue. Environ Resour Econ 3:41–61CrossRefGoogle Scholar
  42. Reilly J, Prinn R, Harnisch J, Fitzmaurice J, Jacoby H, Kicklighter D, Melillo J, Stone P, Sokolov A, Wang C (1999) Multi-gas assessment of the Kyoto Protocol. Nature 401:549–555CrossRefGoogle Scholar
  43. Revelle R, Munk W (1977) The carbon dioxide cycle and the biosphere. In: Energy and climate, studies in geophysics. National Academy Press, Washington, D,C., US, pp 140–158Google Scholar
  44. Schmalensee R (1993) Comparing greenhouse gases for policy purposes. Energy J 14:245–255Google Scholar
  45. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New York, USA, 1203 ppGoogle Scholar
  46. Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Change 68:281–302CrossRefGoogle Scholar
  47. Shine KP, Berntsen TK, Fuglestvedt JS, Skeie RB, Stuber N (2007) Comparing the climate effect of emissions of short- and long-lived climate agents. Philos Trans R Soc Lond A 365:1903–1914CrossRefGoogle Scholar
  48. Smith SJ (2003) The evaluation of greenhouse gas indices. Clim Change 58:261–265CrossRefGoogle Scholar
  49. Smith SJ, Wigley TML (2000) Global warming potentials: 1. climatic implications of emissions reductions. Clim Change 44:445–457CrossRefGoogle Scholar
  50. Tanaka K (2008) Inverse estimation for the simple earth system model ACC2 and its applications. PhD dissertation, Hamburg Universität, International Max Planck Research School on Earth System Modelling, Hamburg, 296 pp. http://www.sub.uni-hamburg.de/opus/volltexte/2008/3654/
  51. Tanaka K, Kriegler E, Bruckner T, Hooss G, Knorr W, Raddatz T (2007) Aggregated carbon cycle, atmospheric chemistry, and climate model (ACC2): description of the forward and inverse modes. Reports on earth system science, no 40. Max Planck Institute for Meteorology, 188 pp. http://www.mpimet.mpg.de/wissenschaft/publikationen/erdsystemforschung.html
  52. Tanaka K, Raddatz T, O’Neill BC, Reick C (2008) Is the climate sensitivity even more uncertain: Interim Report at International Institute for Applied Systems Analysis (IIASA) Ir-08-012. 79 pp. http://www.iiasa.aca.at/Admin/PUB/Documents/IR-08-012.pdf
  53. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA, 342 ppGoogle Scholar
  54. Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a temperature-dependent Q10. Glob Chang Biol 7:223–230CrossRefGoogle Scholar
  55. Tol RSJ (1999) The marginal costs of greenhouse gas emissions. Energy J 20:61–81Google Scholar
  56. van Aardenne JA, Dentener FJ, Olivier JGJ, Klein Goldewijk CGM, Lelieveld J (2001) A 1 x 1 degree resolution dataset of historical anthropogenic trace gas emissions for the period 1890–1990. Glob Biogeochem Cycles 15(4):909–928CrossRefGoogle Scholar
  57. Wigley TML (1998) The Kyoto Protocol: CO2, CH4 and climate implications. Geophys Res Lett 25:2285–2288CrossRefGoogle Scholar
  58. World Meteorological Organization (WMO) (1999) Scientific assessment of ozone depletion: 1998. Global ozone research and monitoring project—report, no 44. Geneva, 650 ppGoogle Scholar
  59. World Meteorological Organization (WMO) (2003) Scientific assessment of ozone depletion: 2002. Global ozone research and monitoring project—report, no 47. Geneva, 498 ppGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Katsumasa Tanaka
    • 1
    • 2
    • 3
    Email author
  • Brian C. O’Neill
    • 1
    • 4
  • Dmitry Rokityanskiy
    • 1
    • 5
  • Michael Obersteiner
    • 1
  • Richard S. J. Tol
    • 1
    • 6
    • 7
    • 8
    • 9
  1. 1.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  2. 2.Research Unit Sustainability and Global ChangeUniversity of HamburgHamburgGermany
  3. 3.International Max Planck Research School on Earth System Modelling (IMPRS-ESM)HamburgGermany
  4. 4.National Center for Atmospheric Research (NCAR)BoulderUSA
  5. 5.Russian Academy of SciencesMoscowRussia
  6. 6.Economic and Social Research InstituteDublinIreland
  7. 7.Institute for Environmental StudiesVrije UniversiteitAmsterdamThe Netherlands
  8. 8.Department of Spatial EconomicsVrije UniversiteitAmsterdamThe Netherlands
  9. 9.Department of Engineering and Public PolicyCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations