Climatic Change

, Volume 96, Issue 4, pp 489–537 | Cite as

An Integrated Assessment of changes in the thermohaline circulation

  • Till Kuhlbrodt
  • Stefan Rahmstorf
  • Kirsten Zickfeld
  • Frode Bendiksen Vikebø
  • Svein Sundby
  • Matthias Hofmann
  • Peter Michael Link
  • Alberte Bondeau
  • Wolfgang Cramer
  • Carlo Jaeger
Article

Abstract

This paper discusses the risks of a shutdown of the thermohaline circulation (THC) for the climate system, for ecosystems in and around the North Atlantic as well as for fisheries and agriculture by way of an Integrated Assessment. The climate model simulations are based on greenhouse gas scenarios for the 21st century and beyond. A shutdown of the THC, complete by 2150, is triggered if increased freshwater input from inland ice melt or enhanced runoff is assumed. The shutdown retards the greenhouse gas-induced atmospheric warming trend in the Northern Hemisphere, but does not lead to a persistent net cooling. Due to the simulated THC shutdown the sea level at the North Atlantic shores rises by up to 80 cm by 2150, in addition to the global sea level rise. This could potentially be a serious impact that requires expensive coastal protection measures. A reduction of marine net primary productivity is associated with the impacts of warming rather than a THC shutdown. Regional shifts in the currents in the Nordic Seas could strongly deteriorate survival chances for cod larvae and juveniles. This could lead to cod fisheries becoming unprofitable by the end of the 21st century. While regional socioeconomic impacts might be large, damages would be probably small in relation to the respective gross national products. Terrestrial ecosystem productivity is affected much more by the fertilization from the increasing CO2 concentration than by a THC shutdown. In addition, the level of warming in the 22nd to 24th century favours crop production in northern Europe a lot, no matter whether the THC shuts down or not. CO2 emissions corridors aimed at limiting the risk of a THC breakdown to 10% or less are narrow, requiring departure from business-as-usual in the next few decades. The uncertainty about THC risks is still high. This is seen in model analyses as well as in the experts’ views that were elicited. The overview of results presented here is the outcome of the Integrated Assessment project INTEGRATION.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amthor JS (2001) Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res 73(1):1–34CrossRefGoogle Scholar
  2. Antoine D, André J-M, Morel A (1996) Oceanic primary production, 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Glob Biogeochem Cycles 10(1):57–69CrossRefGoogle Scholar
  3. Azar C, Lindgren K, Larson E, Möllersten, K (2006) Carbon capture and storage from fossil fuels and biomass—Costs and potential role in stabilizing the atmosphere. Clim Change 74(1–3):47–79. doi:10.1007/s10584-005-3484-7 CrossRefGoogle Scholar
  4. Beaugrand G, Reid P, Ibanez F, Lindley J, Edwards M (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694CrossRefGoogle Scholar
  5. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755. doi:10.1038/nature05317.CrossRefGoogle Scholar
  6. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Qur CL, Levitus S, Nojiri Y, Shum C, Talley L, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  7. Björnsson B, Steinarsson A (2002) The food-unlimited growth rate of Atlantic cod Gadus morhua. Can J Fish Aquat Sci 59:494–502CrossRefGoogle Scholar
  8. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Chang Biol 13(3):679–706. doi:10.1111/j.1365-2486.2006.01305.x CrossRefGoogle Scholar
  9. Boyer T, Levitus S, Antonov J, Locarnini R, Mishonov A, Garcia H, Josey SA (2007) Changes in freshwater content in the North Atlantic ocean 1955-2006. Geophys Res Lett 34:L16603. doi:10.1029/2007GL030126 CrossRefGoogle Scholar
  10. Broecker W (1987) Unpleasant surprises in the greenhouse? Nature 328:123CrossRefGoogle Scholar
  11. Bruckner T, Hooss G, Füssel HM, Hasselmann K (2003) Climate system modeling in the framework of the tolerable windows approach: the ICLIPS climate model. Clim Change 56:119–137CrossRefGoogle Scholar
  12. Bruckner T, Petschel-Held G, Tóth F, Füssel HM, Helm C, Leimbach M, Schellnhuber HJ (1999) Climate change decision support and the tolerable windows approach. Environ Model Assess 4:217–234CrossRefGoogle Scholar
  13. Bruckner T, Zickfeld K (2009) Emissions corridors for reducing the risk of a collapse of the Atlantic thermohaline circulation. Mitig Adapt Strategies Glob Chang 14:61–83. doi:10.1007/s11027-008-9150-9 CrossRefGoogle Scholar
  14. Bryan FO, Danabasoglu G, Nakashiki N, Yoshida Y, Kim D-H, Tsutsui J, Doney SC (2006) Response of the North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J Clim 19:2382–2397CrossRefGoogle Scholar
  15. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25° N. Nature 438:655–657CrossRefGoogle Scholar
  16. Buitenhuis E, Le Quéré C, Aumont O, Beaugrand G, Bunker A, Hirst A, Ikeda T, O’Brien T, Piontkovski S, Straile D (2006) Biogeochemical fluxes through mesozooplankton. Glob Biogeochem Cycles 20:GB2003. doi:10.1029/2005GB002511 CrossRefGoogle Scholar
  17. Conkright M, Levitus S, Boyer T (1994) World ocean atlas 1994, volume 1: nutrients. Technical report, NESDIS 1, US Department of Commerce, Washington, D.C.Google Scholar
  18. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley J, Friend AD, Kurcharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results form six dynamic global vegetation models. Glob Chang Biol 7:357–373CrossRefGoogle Scholar
  19. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ-M, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5° N. Science 317:935–938CrossRefGoogle Scholar
  20. Curry R, Mauritzen C (2005) Dilution of the northern North Atlantic ocean in recent decades. Science 308:1772–1774CrossRefGoogle Scholar
  21. Easterling W, Aggarwal P, Batima P, Brander K, Erda L, Howden S, Kirilenko A, Morton J, Soussana J-F, Schmidhuber J, Tubiello F (2007) Food, fibre and forest products. In: Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  22. EEA (2000) CORINE land cover technical guide—addendum. European Environment Agency, Copenhagen. Report No. 40Google Scholar
  23. Ellertsen B, Fossum P, Solemdal P, Sundby S (1989) Relation between temperature and survival of eggs and first-feeding larvae of northeast Arctic cod Gadus morhua L. Rapp P-v Reun Cons Int Explor Mer 191:209–219Google Scholar
  24. Ewert F, Porter J, Rounsevell M (2007) Crop models, CO2, and climate change—comments to long. Science 315:459CrossRefGoogle Scholar
  25. Ewert F, Rounsevell M, Reginster I, Metzger M, Leemans R (2005) Future scenarios of European agricultural land use: estimating, I., changes in crop productivity. Agric Ecosyst Environ 107(2–3):101–116CrossRefGoogle Scholar
  26. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206CrossRefGoogle Scholar
  27. Farquhar G, von Caemmerer S, Berry J (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefGoogle Scholar
  28. Fischer G, Shah M, Tubiello FN, Van Velthuizen H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. Philos Trans R Soc Lond Biol Sci 360(1463):2067–2083CrossRefGoogle Scholar
  29. Fischer G, van Velthuizen H, Shah M, Nachtergaele F (2002) Global agro-ecological assessment for agriculture in the 21st century: methodology and results. IIASA, LaxenburgGoogle Scholar
  30. Fromentin J, Planque B (1996) Calanus and environment in the eastern North Atlantic. 2. Influence of the North Atlantic oscillation on C. finmarchicus and C. helgolandicus. Mar Ecol Prog Ser 134(1–3):111–118CrossRefGoogle Scholar
  31. Furevik T, Bentsen M, Drange H, Kindem IHT, Kvamstø NG, Sorteberg A (2003) Description and validation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51CrossRefGoogle Scholar
  32. Ganachaud A, Wunsch C (2002) Oceanic nutrient and oxygen transports and bounds on export production during the world ocean circulation experiment. Glob Biogeochem Cycles 16(4):1057. doi:10.1029/2000GB001333 CrossRefGoogle Scholar
  33. Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270CrossRefGoogle Scholar
  34. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703. doi:10.1029/2005GL023209 CrossRefGoogle Scholar
  35. Gregory WW, Conkright ME, Ginoux P, O’Reilly JE, Casey NW (2003) Ocean primary production and climate: global decadal changes. Geophys Res Lett 30(15):L12703. doi:10.1029/2003GL016889 Google Scholar
  36. Haidvogel D, Arango H, Budgell W, Cornuelle B, Curchitser E, Lorenzo ED, Fennel K, Geyer W, Hermann A, Lanerolle L, Levin J, McWilliams J, Miller A, Moore A, Powell T, Shchepetkin A, Sherwood C, Signell R, Warner J, Wilkin J (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modelling system. Dyn Atmos Ocean 227(7):3595–3624Google Scholar
  37. Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Orsini JAM, Penner NNJE, Scott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  38. Hemming S (2004) Heinrich events: massive late pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev Geophys 42:RG1005. doi:10.1029/2003RG000128 CrossRefGoogle Scholar
  39. Hickler T, Smith B, Prentice I, Mjøfors K, Miller P, Arneth A, Sykes MT (2008) CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob Chang Biol 14(7):1531–1542CrossRefGoogle Scholar
  40. Higgins PA, Vellinga M (2003) Ecosystem responses to abrupt climate change: teleconnections, scale and the hydrological cycle. Clim Change 64(1–2):127–142Google Scholar
  41. Higgins PAT, Schneider SH (2005) Long-term potential ecosystem responses to greenhouse gas-induced thermohaline circulation collapse. Glob Chang Biol 11:699–709. doi:10.1111/j.1365-2486.2005.00952.x CrossRefGoogle Scholar
  42. Hofmann M, Maqueda MAM (2006) Performance of a second-order moments advection scheme in an ocean general circulation model. J Geophys Res 111:C05006. doi:10.1029/2005JC003279 CrossRefGoogle Scholar
  43. Hulme M (2003) Abrupt climate change: can society cope? Phil Trans Soc R Lond A 361:2001–2021. doi:10.1098/rsta.2003.1239 CrossRefGoogle Scholar
  44. Jacob D, Goettel H, Jungclaus J, Muskulus M, Podzun R, Marotzke J (2005) Slowdown of the thermohaline circulation causes enhanced maritime climate influence and snow cover over Europe. Geophys Res Lett 32:L21711. doi:10.1029/2005GL023286 CrossRefGoogle Scholar
  45. Jungclaus JH, Haak H, Esch M, Roeckner E, Marotzke J (2006) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett 33:L17708. doi:10.1029/2006GL026815 CrossRefGoogle Scholar
  46. Keller K, Tan K, Morel FMM, Bradford DF (2000) Preserving the ocean circulation: implications for climate policy. Clim Change 47(1–2):17–43CrossRefGoogle Scholar
  47. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:RG2001. doi:10.1029/2004RG000166 CrossRefGoogle Scholar
  48. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci U S A 105(6):1786–1793CrossRefGoogle Scholar
  49. Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354CrossRefGoogle Scholar
  50. Lindsay RW, Zhang J (2005) The thinning of Arctic sea ice, 1988-2003: have we passed a tipping point? J Clim 18(22):4879–4894CrossRefGoogle Scholar
  51. Link PM, Schneider US, Tol RSJ (2004) Economic impacts of changes in fish population dynamics: the role of the fishermen’s harvesting strategies. Working Paper FNU-50, Research Unit Sustainability and Global Change, HamburgGoogle Scholar
  52. Link PM, Tol RSJ (2006a) Economic impacts of changes in population dynamics of fish on the fisheries in the Barents sea. ICES Mar J Sci 63(4):611–625CrossRefGoogle Scholar
  53. Link PM, Tol RSJ (2006b) Economic impacts on key Barents sea fisheries arising from changes in the strength of the Atlantic thermohaline circulation. Working Paper FNU-104, Research Unit Sustainability and Global Change, HamburgGoogle Scholar
  54. Long SP, Ainsworth E, Leakey A, Nösberger J, Ort D (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 Concentrations. Science 312:1918–1921CrossRefGoogle Scholar
  55. Manabe S, Stouffer R (1993) Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature 364:215–218CrossRefGoogle Scholar
  56. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao, Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  57. Montoya M, Griesel A, Levermann A, Mignot J, Hofmann M, Ganopolski A, Rahmstorf S (2005) The Earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present day conditions. Clim Dyn 25:237–263CrossRefGoogle Scholar
  58. Nakićenović N, Swart R (eds) (2000) IPCC special report on emissions scenarios. Cambridge University Press, CambridgeGoogle Scholar
  59. Nordhaus W (1994) Managing the global commons: the economics of climate change. MIT, CambridgeGoogle Scholar
  60. Obata A (2007) Climate-carbon cycle model response to freshwater discharge into the North Atlantic. J Clim 20(24):5962–5976. doi:10.1175/2007JCLI1808.1 CrossRefGoogle Scholar
  61. Otterå OH, Drange H, Bentsen M, Kvamstø NG, Jiang D (2004) Transient response of the Atlantic meridional overturning circulation to enhanced freshwater input to the Nordic seas-arctic ocean in the Bergen climate model. Tellus 56:342–361CrossRefGoogle Scholar
  62. Otterlei O, Nyhammar G, Folkvord A, Stefansson SO (1999) Temperature- and size-dependent growth of larval and early juvenile Atlantic cod: a comparative study of Norwegian coastal cod and northeast Arctic cod. Can J Fish Aquat Sci 56:2099–2111CrossRefGoogle Scholar
  63. Ottersen G, Stenseth NC (2001) Atlantic climate governs oceanographic and ecological variability in the Barents sea. Limnol Oceanogr 46(7):1774–1780CrossRefGoogle Scholar
  64. Pacanowski RC, Griffies SM (1999) The MOM-3 manual. Technical Report 4, GFDL Ocean Group, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, 680 ppGoogle Scholar
  65. Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173. 10.1126/science.1077445 CrossRefGoogle Scholar
  66. Peterson BJ, McClelland J, Curry R, Holmes RM, Walsh J, Aagard K (2007) Trajectory shifts in the Arctic and subarctic freshwater cycle. Science 313:1061–1066CrossRefGoogle Scholar
  67. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim Dyn 16:1–17CrossRefGoogle Scholar
  68. Petschel-Held G, Schellnhuber H-J, Bruckner T, Tóth F, Hasselmann K (1999) The tolerable windows approach: theoretical and methodological foundations. Clim Change 41:303–331CrossRefGoogle Scholar
  69. Planque B, Fromentin J (1996) Calanus and environment in the eastern North Atlantic. 1. Spatial and temporal patterns of C. finmarchicus and C. helgolandicus. Mar Ecol Prog Ser 134(1–3):101–109CrossRefGoogle Scholar
  70. Rahmstorf S (1997) Risk of sea-change in the Atlantic. Nature 388:825–826CrossRefGoogle Scholar
  71. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214CrossRefGoogle Scholar
  72. Rahmstorf S (2006) Thermohaline ocean circulation. In: Elias SA (ed) Encyclopedia of quarternary sciences. Elsevier, AmsterdamGoogle Scholar
  73. Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich IV, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605. doi:10.1029/2005GL023655 CrossRefGoogle Scholar
  74. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43:353–367CrossRefGoogle Scholar
  75. Rahmstorf S, Zickfeld K (2005) Thermohaline circulation changes: a question of risk assessment. Clim Change 68:241–247CrossRefGoogle Scholar
  76. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311(5763):986–990. doi:10.1126/science.1121381 CrossRefGoogle Scholar
  77. Rounsevell M, Reginster I, Araujo M, Carter T, Dandonker N, Ewert F, House J, Kankaanpaa S, Leemans R, Metzger M, Schmit C, Smith P, Tuck G (2006) A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114(1):57–68CrossRefGoogle Scholar
  78. Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249CrossRefGoogle Scholar
  79. Schaeffer M, Selten FM, Opsteegh JD, Goosse H (2002) Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios. Geophys Res Lett 29(16):1767. doi:10.1029/2002GL015254 CrossRefGoogle Scholar
  80. Schaeffer M, Selten FM, Opsteegh JD, Goosse H (2004) The influence of ocean convection patterns on high-latitude climate projections. J Clim 17(22):4316–4329CrossRefGoogle Scholar
  81. Schaphoff S, Lucht W, Gerten D, Sitch S, Cramer W, Prentice IC (2006) Terrestrial biosphere carbon storage under alternative climate projections. Clim Change 74(1–3):97–122. doi:10.1007/s10584-005-9002-5 CrossRefGoogle Scholar
  82. Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 434:628–633CrossRefGoogle Scholar
  83. Schmittner A, Weaver A (2001) Dependence of multiple climate states on ocean mixing parameters. Geophys Res Lett 28(6):1027–1030CrossRefGoogle Scholar
  84. Schneider von Deimling T, Held H, Ganopolski A, Rahmstorf S (2006) Climate sensitivity estimated from ensemble simulations of glacial climate. Clim Dyn 27(2–3):149–163. doi:10.1007/s00382-006-0126-8 CrossRefGoogle Scholar
  85. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9(2):161–185CrossRefGoogle Scholar
  86. Six KD, Maier-Reimer E (1996) Effects of phytoplankton on seasonal carbon fluxes in an ocean general circulation model. Glob Biogeochem Cycles 10(4):559–583CrossRefGoogle Scholar
  87. Stern N (2007) The economics of climate change: the Stern review. Cambridge University Press, Cambridge, xix + 692 ppGoogle Scholar
  88. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Weaver AJ, Spelman MJ, Hurlin W, participating groups (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387CrossRefGoogle Scholar
  89. Sundby S (1994) The influence of bio-physical processes on fish recruitment in an arctic-boreal ecosystem. Dr. Philos. thesis, University of Bergen, Bergen, Norway, 189 ppGoogle Scholar
  90. Sundby S (2000) Recruitment of Atlantic cod stocks in relation to temperature and advection of copepod populations. Sarsia 85:277–298Google Scholar
  91. Sundby S, Godø OR (1994) Life history of Arcto-Norwegian cod stock. ICES Coop Res Rep 205:12–45Google Scholar
  92. Sundby S, Nakken O (2008) Spatial shifts in spawning habitats of Arcto-Norwegian cod induced by climate change. ICES J Mar Sci 65(6):953–962. doi:10.1093/icesjms/fsn085 CrossRefGoogle Scholar
  93. Swingedouw D, Bopp L, Matras A, Braconnot P (2007) Effect of land-ice melting and associated changes in the AMOC results in little overall impact on oceanic CO2 uptake. Geophys Res Lett 34:L23706. doi:10.1029/2007GL031990 CrossRefGoogle Scholar
  94. Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic Meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33:L07711. doi:10.1029/2006GL025765 CrossRefGoogle Scholar
  95. Taub DR, Miller B, Allen H (2007) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Chang Biol 14(3). doi:10.1111/j.1365–2486.2007.01511.x
  96. Tubiello F, Ewert F (2002) Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Eur J Agron 18(1–2):57–74CrossRefGoogle Scholar
  97. Tubiello FN, Amthor JS, Boote KJ, Donatelli M, Easterling W, Fischer G, Gifford RM, Howden M, Reilly J, Rosenzweig C (2007) Crop response to elevated CO2 and world food supply: A comment on “Food for Thought...” by Long et al. Science 312:1918–1921, 2006. Eur J Agron 26(3):215–223CrossRefGoogle Scholar
  98. Velicogna I, Wahr J (2006) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331. doi:10.1038/nature05168 CrossRefGoogle Scholar
  99. Vellinga M, Wood R (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54(3):251–267CrossRefGoogle Scholar
  100. Vellinga M, Wood R (2008) Impacts of thermohaline circulation shutdown in the twenty-first century. Clim Change 91(1–2):43–63. doi:10.1007/s10584-006-9146-y CrossRefGoogle Scholar
  101. Vikebø FB, Sundby S, Ådlandsvik B, Fiksen Ø (2005) The combined effect of transport and temperature on distribution and growth of larvae and pelagic juveniles of Arcto-Norwegian cod. ICES Mar J Sci 62(7):1375–1386CrossRefGoogle Scholar
  102. Vikebø FB, Sundby S, Ådlandsvik B, Otterå OH (2006) Impacts of a reduced THC on transport and growth of Arcto-Norwegian cod. Fisheries Oceanogr 16(3):216–228CrossRefGoogle Scholar
  103. Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geogr 21:530–548CrossRefGoogle Scholar
  104. Winguth A, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M (2005) Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model. Geophys Res Lett 32:L23714. doi:10.1029/2005GL023681 CrossRefGoogle Scholar
  105. Wood RA, Keen AB, Mitchell JFB, Gregory JM (1999) Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399:572–575CrossRefGoogle Scholar
  106. Zaehle S, Bondeau A, Carter TR, Cramer W, Erhard M, Prentice IC, Reginster I, Rounsevell MDA, Sitch S, Smith B, Smith PC, Sykes MT (2007) Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystems. doi:10.1007/s10021-007-9028-9
  107. Zickfeld K, Eby M, Weaver A (2008) Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2. Glob Biogeochem Cycles 22:GB3024. doi:10.1029/2007GB003118 CrossRefGoogle Scholar
  108. Zickfeld K, Levermann A, Morgan MG, Kuhlbrodt T, Rahmstorf S, Keith DW (2007) Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Clim Change 82(3–4):235–265. doi:10.1007/s10584-007-9246-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Till Kuhlbrodt
    • 1
  • Stefan Rahmstorf
    • 1
  • Kirsten Zickfeld
    • 1
  • Frode Bendiksen Vikebø
    • 2
    • 3
  • Svein Sundby
    • 2
    • 3
  • Matthias Hofmann
    • 1
  • Peter Michael Link
    • 4
  • Alberte Bondeau
    • 1
  • Wolfgang Cramer
    • 1
    • 5
  • Carlo Jaeger
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute for Marine ResearchBergenNorway
  3. 3.Bjerknes Centre for Climate ResearchBergenNorway
  4. 4.Research Unit Sustainability and Global ChangeHamburg UniversityHamburgGermany
  5. 5.Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE)Aix en ProvenceFrance

Personalised recommendations