Advertisement

Climatic Change

, Volume 94, Issue 1–2, pp 5–18 | Cite as

Space-based assessment of glacier fluctuations in the Wakhan Pamir, Afghanistan

  • Umesh K. Haritashya
  • Michael P. Bishop
  • John F. Shroder
  • Andrew B. G. Bush
  • Henry N. N. Bulley
Article

Abstract

Alpine glaciers directly and indirectly respond to climate and play a significant role in mountain geodynamics. Many glaciers around the world have been found to be retreating and downwasting, although these patterns are highly variable due to variations in local topography, regional climate and ice-flow dynamics. Unfortunately, limited information is available on glacier fluctuations in the Wakhan Pamir of Afghanistan, and no data exist from there in the World Glacier Monitoring Services (WGMS) database. Our general circulation model (GCM) climate simulations represent a double carbon-dioxide-loading scenario, and results suggest that glaciers in this region should be downwasting and retreating. Therefore, as part of the Global Land Ice Measurements from Space (GLIMS) project, we evaluated ASTER and Landsat MSS data to assess glacier fluctuations from 1976–2003, in the Wakhan Corridor of Afghanistan. We sampled 30 alpine valley, compound alpine valley or cirque-type glaciers of varying size and orientation. Results indicate that 28 glacier-terminus positions have retreated, and the largest average retreat rate was 36 m year − 1. Satellite image analysis reveals non-vegetated glacier forefields formed prior to 1976, as well as geomorphological evidence for apparent glacier-surface downwasting after 1976. Climatic conditions and glacier retreat have resulted in disconnection of tributary glaciers to their main trunk, the formation of high-altitude lakes, and an increased frequency and size of proglacial lakes. Collectively, these results suggest increased hazard potential in some basins and a negative regional mass balance.

Keywords

Lateral Moraine Glacier Retreat Alpine Glacier Normalize Difference Snow Index Large Glacier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizen VB, Kuzmichenok VA, Surazakov AB, Aizen EM (2006) Glacier changes in central and northern Tien Shan during the last 140 years based on surface and remote sensing data. Ann Glaciol 43:1–13Google Scholar
  2. Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol and Earth Sys Sc 8(1):47–61Google Scholar
  3. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sc Rev 10:297–317CrossRefGoogle Scholar
  4. Bishop MP, Barry RG, Bush ABG et al (2004) Global land-ice measurements from space (GLIMS): remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto Int 19(2):57–84CrossRefGoogle Scholar
  5. Braslau D (1972) The glaciers of Keshnikhan. In: Gratzl K (ed) Hindukusch-Osterreichische Forschungs expedition in den Wakhan 1970. Akademische Druck- u. Verlagsanstalt, Graz, pp 112–116Google Scholar
  6. Breckle SW, Frey W (1976a) Die hochsten Berge im Zentralen Hindukusch. Afghanistan Journal 3(3):91–94Google Scholar
  7. Breckle SW, Frey W (1976b) Beobachtungen zur heutigen Vergletscherung der Hauptkette des Zentralen Hindukusch. Afghan J 3(3):95–100Google Scholar
  8. Buchroithner MF (1978) Zur geologie des Afghanischen Pamir. In: Senarclens de Grancy R and Kostka R (eds) Grosser Pamir. Adademische Druck-u. Verlagsanstalt, Graz, pp 85–118Google Scholar
  9. Bush ABG (2007) Extratropical influences on the El Niño Southern Oscillation through the Late Quaternary. J Climate 20:788–800CrossRefGoogle Scholar
  10. Gilbert O, Jamieson D, Lister H, Pendlington A (1969) Regime of an Afghan glacier. J Glaciology 8(52):51–65Google Scholar
  11. Grötzbach E (1990) Afghanistan: eine geografische Landeskunde, (Wissenschaftliche Länderkunden 37). Wissenschaftliche Buchgesellschaft, Darmstadt, p 449Google Scholar
  12. Gupta RP, Haritashya UK, Singh P (2005) Mapping dry/wet snow cover in the Indian Himalayas using IRS multispectral imagery. Rem Sens Environ 97:458–469Google Scholar
  13. Haritashya UK, Singh P, Kumar N, Singh Y (2006) Hydrological importance of an unusual hazard in a mountainous basin: flood and landslide. Hydrol Proc 20:3147–3154CrossRefGoogle Scholar
  14. Hewitt K (2005) The Karakoram anomaly? Glacier Expansion and the ‘Elevation Effect,’ Karakoram Himalaya. Mt Res Dev 25(4):332–340CrossRefGoogle Scholar
  15. Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mas-Troianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126CrossRefGoogle Scholar
  16. Kargel JS, Abrams MJ, Bishop MP et al (2005) Multispectral imaging contributions to global land ice measurements from space. Rem Sens Environ 99:187–219CrossRefGoogle Scholar
  17. Khromova TE, Osipova GB, Tsvetkov DG, Dyurgerov MB, Barry RG (2006) Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Rem Sens Environ 102:24–32CrossRefGoogle Scholar
  18. Kotlyakov VM (Editor in Chief) (1997) The World Atlas of Snow and Ice Resources. 3 volumes, Institute of Geography, Russian Academy of Sciences, MoscowGoogle Scholar
  19. Kotlyakov VM, Lebedeva IM (1998) Melting and evaporation of glacier systems in the Hindu Kush–Himalayan region and their possible changes as a result of global warming. In: Chalise SR, Herrmann A, Khanal NR, Lang H, Molnar L, Pokhrel AP (eds) Ecohydrology of high mountain areas. ICIMOD, Kathmandu pp 367–375Google Scholar
  20. Kravtsova VI, Tsarev BK (1997) Snow cover and avalanches of Afghanistan (in Russian). Tashkent, p 136Google Scholar
  21. Lalande P, Herman NM, Zillhardt J (1974) Cartes climatiques de l’Afghanistan. L’Institut de Meteorologie, Kaboul, Publication no. 4, v 1, text, 47 p, v 2, mapsGoogle Scholar
  22. Lebedeva IM (1997) Change of the glacial runoff of the Hindu Kush rivers under the global climate warming (in Russian). MGI (Data of Glaciological Studies) 83:65–72Google Scholar
  23. Patzelt G (1978) Gletscherkundliche Untersuchlungen im ‘Grossen Pamir’. In: Grancy R and Kostka R (eds) Grosser Pamir. Akademische Druck-u, Graz, pp 131–149Google Scholar
  24. Paul F, Kääb A, Max M, Kellenberger T, Haeberli W (2004) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31:L21402. doi: 10.1029/2004GL020816 CrossRefGoogle Scholar
  25. Paul F, Kääb A, Haeberli W (2007) Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Glob Planet Change 56(1-2):111–122CrossRefGoogle Scholar
  26. Porter SC (1985) Extent of Late-Pleistocene glaciers in Afghanistan based on interpretation of Landsat imagery. In: Agrawal DP, Kusumgar S, Krishnamurthy RK (eds) Climate and geology of Kashmir and central Asia: The last four million years. Current Trends in Geology vol VI. Today & Tomorrow’s Printers and Publishers, New Delhi, pp 191–195Google Scholar
  27. Salomonson VV, Appel I (2004) Estimating fractional snow cover from MODIS using the normalized difference snow index. Rem Sens Environ 89:351–360CrossRefGoogle Scholar
  28. Shroder JF Jr (1980) Special problems of glacial inventory in Afghanistan. Hydrol Sc Bull 126:142–147, World Glacier Inventory Proceedings, Reideralp Workshop, September 1978 (IAHS-AISH)Google Scholar
  29. Shroder JF Jr (1989) Glacierized areas of Afghanistan. In: Haeberli W, Bosch H, Scherler K, Ostrem G, Wallen CC (eds) World Glacier Inventory, Status 1988. IAHS (ICSI)-UNEP-UNESCO, Teufen, pp C39–C40, C346–C353Google Scholar
  30. Shroder JF Jr, Bishop MP (2007) Satellite-image analysis of glaciers of Afgghanistan. In: Williams RS Jr, Ferrigno JG (eds) Satellite image atlas of glaciers. US Geological Survey, Reston, pp 1386-F, Professional PaperGoogle Scholar
  31. Sivall TI (1977) Synoptic-climatological study of the Asian Summer monsoon in Afghanistan. Geogr Ann 59A:67–87CrossRefGoogle Scholar
  32. Solomina O, Barry R, Bodnya M (2004) The retreat of Tien Shan glaciers (Kyrgyzstan) since the little ice age estimated from aerial photographs, lichenometric and historical data. Geogr Ann 86A:205–215CrossRefGoogle Scholar
  33. Tsarev BK, Getler MI, Pyatova RB (1986) Some properties of stable snow cover regime in the Hindu Kush Mountains (in Russian). MGI (Data of Glaciological Studies) 56:73–78Google Scholar
  34. von Wissman H (1959) Die Heutige Vergletscherung und Schneegrenze in Hoch Asien. Abhandlung der Mathematisch – Naturwissenschaftlichen klasse 14, Akademie der Wissenschaften und der literatur in Mainz. Steiner Verlag, Wiesbaden, pp 1103–1431Google Scholar
  35. WMO (1981) Climatic atlas of Asia. WMO, Geneva, p 28Google Scholar
  36. Zabirov RD (1955) Oledenenie Pamira. Nauka, MoscowGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Umesh K. Haritashya
    • 1
  • Michael P. Bishop
    • 2
  • John F. Shroder
    • 2
  • Andrew B. G. Bush
    • 3
  • Henry N. N. Bulley
    • 2
  1. 1.Department of GeologyUniversity of DaytonDaytonUSA
  2. 2.Department of Geography and GeologyUniversity of Nebraska-OmahaOmahaUSA
  3. 3.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations