Advertisement

Climatic Change

, 93:1 | Cite as

Methane stocks in tropical hydropower reservoirs as a potential energy source

  • F. M. RamosEmail author
  • L. A. W. Bambace
  • I. B. T. Lima
  • R. R. Rosa
  • E. A. Mazzi
  • P. M. Fearnside
Article

Abstract

Several studies over the last decade have shown that tropical reservoirs may constitute an appreciable source of methane (CH4) to the atmosphere. Here, we show that the use of low-cost, innovative mitigation and recovery strategies is able not only to reduce these emissions, but also to transform existing biogenic methane stocks into a renewable energy source. Recovered gas may be pumped to large consuming centers or stored locally and burned by gas turbines to generate electricity during high-demand periods, or even purified for transport applications. Our analysis shows that the use of biogenic methane may increase considerably the energy supply in countries, like Brazil, which possess large tropical reservoirs.

Keywords

Particulate Organic Carbon Methane Emission Clean Development Mechanism Glob Biogeochem Cycle Extraction Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos MA, Matvienko B (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob Biogeochem Cycles 19:GB4007. doi: 10.1029/2005GB002457 CrossRefGoogle Scholar
  2. Bambace LAW, Ramos FM, Lima IBT, Rosa RR (2007) Mitigation and recovery of methane emissions from tropical hydroelectric dams. Energy 32:1038–1046CrossRefGoogle Scholar
  3. Brazil Agência Nacional de Energia Elétrica (ANEEL) (2005) Atlas de energia elétrica do Brasil (2a edição). Brasília, BrazilGoogle Scholar
  4. Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Glob Biogeochem Cycles 2:299–327CrossRefGoogle Scholar
  5. Delmas R, Richard S, Guérin F, Abril G, Galy-Lacaux C, Delon C, Grégoire A (2004) Long term greenhouse gas emissions from the hydroelectric reservoir of Petit Saut (French Guiana) and potential impacts. In: Tremblay A, Varfalvy L, Roehm C, Garneau M (eds) Greenhouse gas emissions: fluxes and processes. Hydroelectric reservoirs and natural environments, Environmental Science Series. Springer, New York, pp 293–312Google Scholar
  6. dos Santos MA, Rosa LP, Sikar B, Sikar E, dos Santos EO (2006) Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy 34:481–488CrossRefGoogle Scholar
  7. Duchemin E, Lucotte M, Canuel R, Chamberland A (1995) Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the Boreal region. Glob Biogeochem Cycles 9(4):529–540CrossRefGoogle Scholar
  8. Duchemin E, Lucotte M, Queiroz AG, Canuel R, da Silva HCP, Almeida DC, Dezincourt J, Ribeiro LE (2000) Greenhouse gas emissions from an old tropical reservoir in Amazonia: Curuá-Una reservoir. Verh Internat Verein Limnol 27:1391–1395Google Scholar
  9. Fearnside PM (1995) Hydroelectric dams in the Brazilian Amazon as sources of greenhouse gases. Environ Conserv 22:7–19Google Scholar
  10. Fearnside PM (1997) Greenhouse-gas emissions from Amazonian hydroelectric reservoirs: the example of Brazil’s Tucuruí dam as compared to fossil fuel alternatives. Environ Conserv 24:64–75CrossRefGoogle Scholar
  11. Fearnside PM (2002) Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruí dam) and the energy policy implications. Water Air Soil Pollut 133:69–96CrossRefGoogle Scholar
  12. Fearnside PM (2004) Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly clean energy source. An editorial comment. Clim Change 66:1–8CrossRefGoogle Scholar
  13. Fearnside PM (2005a) In: Sevá Filho AO (ed) Tenotã-mõ: alertas sobre as conseqüências dos projetos hidrelétricos no rio Xingu, Pará, Brasil, International Rivers Network, São Paulo, Brazil, 2005. pp 204–241. http://www.irn.org/programs/latamerica/pdf/TenotaMo.pdf
  14. Fearnside PM (2005b) Do hydroelectric dams mitigate global warming? The case of Brazil’s Curuá-Una dam. Mitig Adapt Strategies Glob Chang 10(4):675–691CrossRefGoogle Scholar
  15. Fearnside PM (2005c) Brazil’s Samuel dam: lessons for hydroelectric development policy and the environment in Amazonia. Environ Manage 35(1):1–19CrossRefGoogle Scholar
  16. Fearnside PM (2006) Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu river basin. Environ Manage 38(1):16–27CrossRefGoogle Scholar
  17. Fearnside PM (2008) Hidrelétricas como ‘fábricas de metano’: O papel dos reservatórios em áreas de floresta tropical na emissão de gases de efeito estufa. Oecologia Brasiliensis 12:100–115CrossRefGoogle Scholar
  18. Forster P, 50 others (2007) Changes in atmospheric constituents and radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234Google Scholar
  19. Galy-Lacaux C, Delmas R, Jambert C, Dumestre J-F, Labroue L, Richard S, Gosse P (1997) Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana. Glob Biogeochem Cycles 11:471–483CrossRefGoogle Scholar
  20. Guérin F, Abril G (2007) Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J Geophys Res 112:G03006CrossRefGoogle Scholar
  21. Guérin F, Abril G, Richard S, Burban B, Reynouard C, Seyler P, Delmas R (2006) Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers. Geophys Res Lett 33:L21407CrossRefGoogle Scholar
  22. Joyce J, Jewell PW (2003) Physical controls on methane ebullition from reservoirs and lakes. Environ Eng Geosci 9:167–178CrossRefGoogle Scholar
  23. Keller M, Stallard RF (1994) Methane emission by bubbling from Gatun Lake, Panama. J Geophys Res (Atmos.) 99(D4):8307–8319CrossRefGoogle Scholar
  24. Kemenes A, Forsberg BR, Melack JM (2007) Gas release below a tropical hydroelectric dam. Geophys Res Lett 34(12):L12809CrossRefGoogle Scholar
  25. Kling GW, Evans WC, Tanyileke G, Kusakabe M, Ohba T, Yoshida Y, Hell JV (2005) Degassing Lakes Nyos and Monoun: defusing certain disaster. Proc Natl Acad Sci U S A 102(40):14185–14190CrossRefGoogle Scholar
  26. Lima IBT (2005) Biogeochemical distinction of methane releases from two Amazon hydroreservoirs. Chemosphere 59:1697–1702CrossRefGoogle Scholar
  27. Lima IBT, ENovo MLM, Ballester MV, Ometto JP (1998) Methane production, transport and emission in Amazon hydroelectric plants. In: IEEE IGARSS’98 international geoscience and remote sensing symposium, Seattle, proceedings, pp 2529–2531Google Scholar
  28. Lima IBT, Ramos FM, Bambace LAW, Rosa RR (2008) Methane emissions from large dams as renewable energy resources: a developing nation perspective. Mitig Adapt Strategies Glob Change 13:193–206CrossRefGoogle Scholar
  29. Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IBT, Novo EMLM (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob Chang Biol 10:530–544CrossRefGoogle Scholar
  30. Muresan B, Cossa D, Richard S, Dominique Y (2008) Monomethylmercury sources in a tropical artificial reservoir. Appl Geochem 23:1101–1126CrossRefGoogle Scholar
  31. Novo ELM, Tundisi JG (1994) Contribution of remote sensing techniques to the assessment of methane emission from large tropical reservoirs. Remote Sens Rev 10:143–153Google Scholar
  32. Nozhevnikova AN, Holliger C, Ammann A, Zehnder AJB (1997) Methanogenesis in sediments from deep lakes at different temperatures (12–70 degrees C). Water Sci Technol 36:57–64CrossRefGoogle Scholar
  33. Pacca S (2007) Impacts from decommissioning of hydroelectric dams: a life cycle perspective. Clim Change 84:281–294CrossRefGoogle Scholar
  34. Ramos FM, Lima IBT, Rosa RR, Mazzi EA, Carvalho JC, Rasera MFFL, Ometto JPHB, Assireu AT, Stech JL (2006) Extreme event dynamics in methane ebullition fluxes from tropical reservoirs. Geophys Res Lett 33:L21404CrossRefGoogle Scholar
  35. Rosa LP, dos Santos MA (2000) Certainty and uncertainty in the science of greenhouse gas emissions from hydroelectric reservoirs (part II) World Commission on Dams, Cape Town, South Africa, 2000. http://www.dams.org/docs/kbase/thematic/tr22pt2.pdf
  36. Schimel D, 75 others (1996) Radiative forcing of climate change. In Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change. Cambridge University Press, Cambridge, pp 65–131Google Scholar
  37. St Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775CrossRefGoogle Scholar
  38. Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • F. M. Ramos
    • 1
    Email author
  • L. A. W. Bambace
    • 1
  • I. B. T. Lima
    • 2
  • R. R. Rosa
    • 1
  • E. A. Mazzi
    • 3
  • P. M. Fearnside
    • 4
  1. 1.National Institute for Space Research (INPE)São José dos CamposBrazil
  2. 2.Embrapa PantanalCorumbáBrazil
  3. 3.Laboratory of Isotope Ecology, Nuclear Energy Center for Agriculture (CENA)PiracicabaBrazil
  4. 4.Department of Ecology, National Institute for Research in the Amazon (INPA)ManausBrazil

Personalised recommendations