Climatic Change

, Volume 94, Issue 3–4, pp 429–456

Summer maximum temperature in northern France over the past century: instrumental data versus multiple proxies (tree-ring isotopes, grape harvest dates and forest fires)

  • N. Etien
  • V. Daux
  • V. Masson-Delmotte
  • O. Mestre
  • M. Stievenard
  • M. T. Guillemin
  • T. Boettger
  • N. Breda
  • M. Haupt
  • P. P. Perraud
Article

Abstract

Changes in maximum spring and summer temperature are expected to have impacts on plant phenology and the occurrence of forest fires. Homogenised instrumental records of maximum spring and summer temperature are available in northern France for the past century, as well as documentary records of grape harvest dates and forest fire frequencies. Here we provide a new proxy of seasonal climate obtained by the analysis of latewood tree ring cellulose isotopic composition (δ18O, δ13C and δD), from 15 living oak trees (Quercus petraea) sampled in the Fontainebleau forest, near Paris. For the past 30 years, we have conducted a study on the inter-tree (for oxygen isotopes) and inter-station (for oxygen and hydrogen) isotopic variability. Multiple linear regression statistical analyses are used to assess the response function of documentary and tree-ring isotopic records to a variety of climatic and hydrological parameters. This calibration study highlights the correlation between latewood tree-ring δ18O and δ13C, grape harvest dates and numbers of forest fire starts with maximum growing season (April to September) temperature, showing the potential of multiple proxy reconstructions to assess the past fluctuations of this parameter prior to the instrumental period.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike H (1973) Information theory and extension of the likelihood ratio principe. In: Pietrov BN, Csaki F (eds) Proceedings of the second international symposium of information theory. Akademiai Kiado, Budapest, pp 257–281Google Scholar
  2. Alexander WJ, Mitchell RI (1949) Rapid measurement of cellulose viscosity by the nitration method. Anal Chem 21:1497–1500CrossRefGoogle Scholar
  3. Anderson WT, Bernasconi SM, McKenzie JA, Saurer M, Schweingruber F (2002) Model evaluation for reconstructing the oxygen isotopic composition in precipitation from tree ring cellulose over the last century. Chem Geol 182:121–137CrossRefGoogle Scholar
  4. Augusti A, Betson TR, Schleucher J (2006) Hydrogen exchange during cellulose synthesis distinguishes climatic and biochemical isotopes fractionations in tree rings. New Phytol 172(2):490–499CrossRefGoogle Scholar
  5. Azais JM, Bardet JM (2005) Le modèle linéaire par l’exemple: regression, analyse de la variance et plans d’expériences illustrés avec R, SAS et Splus. Dunod, Paris, p 326Google Scholar
  6. Baillie MGL, Pilcher JR, Pollard AM, Ramesh R (2000) Climatic significance of D/H and C-13/C-12 ratios in Irish oak cellulose. Indian Academy of Science—Earth and Planetary Sciences 109(1):117–127, MarchGoogle Scholar
  7. Barbaroux C, Bréda N (2002) Contrasting seasonal dynamics and distribution of carbohydrate reserves in the stem wood of adult ring porous (sessile oak) and diffuse porous tree (common beech). Tree Physiol 22:1201–1210Google Scholar
  8. Barbour MM, Schurr U, Henry BK et al (2000) Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Peclet effect. Plant Physiol 123(1):671–679Google Scholar
  9. Barbour MM, Andrews TJ, Farquhar GD (2001) Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Aust J Plant Physiol 28:335–348Google Scholar
  10. Barbour MM, Roden JS, Farquhar GD, Ehleringer JB (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Peclet effect. Oecologia 138(2):426–435CrossRefGoogle Scholar
  11. Bariac T, Jusserand C, Mariotti A (1990) Evolution spatiotemporelle de la composition isotopique dans le continuum sol-plante-atmosphère. Geochim Cosmochim Acta 54:413–424CrossRefGoogle Scholar
  12. Beniston M, David B (2004) Extreme climatic events and their evolution under changing climatic conditions. Glob Planet Change 44(1):4–9Google Scholar
  13. Benner R, Fogel ML, Sprague EK, Hodson RE (1987) Depletion of δ13C in lignin and its implications for stable isotope studies. Nature 329:708–710CrossRefGoogle Scholar
  14. Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat Sci Rev 19:87CrossRefGoogle Scholar
  15. Briffa KR, Osborn TJ, Schweingruber FH et al (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–2941CrossRefGoogle Scholar
  16. Buhay WM, Edwards TWD (1995) Climate in south-western Ontario, Canada, between AD 1610 and 1885 inferred from oxygen and hydrogen isotopic measurements of wood cellulose from trees in different hydrologic settings. Quat Res 44(2):438–446CrossRefGoogle Scholar
  17. Burk R, Stuiver M (1981) Oxygen isotope ratios in trees reflect mean annual temperature and humidity. Science 211:1417–1419CrossRefGoogle Scholar
  18. Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. Appl Stat 53(2):405–425Google Scholar
  19. Chuine I, Yiou P, Viovy N et al (2004) Historical phenology: grape ripening as a climate indicator. Nature 432:289–290CrossRefGoogle Scholar
  20. Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and marine atmospheres. In: Tongiorni E (ed) Proceedings of a conference on stable isotopes in oceanographic studies and palaeotemperatures. Lischi and Figli, Pisa, Italy, pp 9–130Google Scholar
  21. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  22. Danis PA, Masson-Delmotte V, Stievenard M et al (2006) Reconstruction of past precipitation delta O-18 using tree-ring cellulose delta O-18 and delta C-13: a calibration study near Lac d’Annecy, France. Earth Planet Sci Lett 243 (3–4):439–448CrossRefGoogle Scholar
  23. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468Google Scholar
  24. Darling WG (2004) Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective. Quat Sci Rev 23(7–8):743–770CrossRefGoogle Scholar
  25. Daux V, Yiou P, Le Roy Ladurie E, Mestre O, Seguin B, Chuine I, Garnier E, Viovy N (2007) Temperature and grape harvest dates in France, international colloquium “global warming, which impacts on the vineyards”, 28–30 March. Perard and Fontaine (eds) Dijon, France, p 9Google Scholar
  26. Dawson TE (1993) Water sources of plants as determined from xylem–water isotopic composition, distribution and water relations. In: Ehleringer JR, Happ AE, Farquhar GD (eds) Stable isotopes and plant carbon–water relations. Academic, New York, pp 465–496Google Scholar
  27. Dawson TE, Pate JS (1996) Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia 107:13–20CrossRefGoogle Scholar
  28. Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112:D15103. doi:10.1029/2007JD008510 CrossRefGoogle Scholar
  29. DeNiro MJ, Epstein S (1981) Isotopic Composition of cellulose from aquatic organisms. Geochim Cosmochim Acta 45(10):1885–1894CrossRefGoogle Scholar
  30. Dupouey JL, Leavitt S, Choisnel E, Jourdain S (1993) Modelling carbon isotope fractionation in tree rings based on effective evapotranspiration and soil water status. Plant Cell Environ 16:939–947CrossRefGoogle Scholar
  31. Edwards TWD, Aravena R, Fritz P, Morgan AV (1985) Interpreting paleoclimate from 18O and 2H in plant cellulose comparison with evidence from fossil insects and relict permafrost in south-western Ontario. Can J Earth Sci 22:1720–1726Google Scholar
  32. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree ring chronologies for reconstructing past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  33. Etien N (2008) Variabilité climatique récente en France: l’apport des isotopes de la cellulose du bois final des chênes de Fontainebleau. Thèse soutenue à l’Université Paris 6.Google Scholar
  34. Etien N, Daux V, Masson-Delmotte V, Stievenard M, Bernard V, Durost S, Guillemin M-Th, Mestre O, Pierre M (2008) A bi-proxy reconstruction of Fontainebleau (France) growing season temperature from A.D. 1596 to 2000. Climate of the Past 4:91–106Google Scholar
  35. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  36. Feng XH, Epstein S (1996) Climatic trends from isotopic records of tree rings: the past 100–200 years. Clim Change 33(4):551–562CrossRefGoogle Scholar
  37. Francey RJ, Tans PP, Allison CE, Enting IG, White JWC, Trolier M (1995) Changes in oceanic and terrestrial carbon uptake since 1982. Nature 373:326–330CrossRefGoogle Scholar
  38. Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langensfeld RL, Michel E, Steele LP (1999) A 1000 year high precision record of δ13C in atmospheric CO2. Tellus 51B:170–193Google Scholar
  39. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310CrossRefGoogle Scholar
  40. Freyer HD (1979) On the 13C record in tree rings. Part 1. 13C variations in northern hemispheric trees during the last 150 years. Tellus 31:124–137CrossRefGoogle Scholar
  41. Friedli H, Lôtscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238CrossRefGoogle Scholar
  42. Gessler A, Peuke AD, Keitel C, Farquhar GD (2007) Oxygen isotope enrichments of organic matter in Ricinus communis during the dial course and as affected by assimilate transport. New Phytol 174:600–613CrossRefGoogle Scholar
  43. Granier A, Bréda N, Biron P, Vilette S (1999) Lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283CrossRefGoogle Scholar
  44. Granier A, Reichstein M, Bréda N et al (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143(1–2):123–145CrossRefGoogle Scholar
  45. Green JW (1963) Wood cellulose. In: Whistler RL, Green JW (eds) Methods in carbohydrate chemistry. Academic, New York, pp 9–21Google Scholar
  46. Guiot J, Berger AL, Munaut AV, Till C (1983) Some new mathematical procedures in dendroclimatology with examples for Switzerland and Morocco. Tree-Ring Bull 42:33–48Google Scholar
  47. Guiot J, Nicault A, Rathgeber C, Edouard JL, Guibal F, Pichard G, Till C (2005) Last-Millenium summer-temperature variations in western Europe based on proxy data. Holocene 15(4):489–500CrossRefGoogle Scholar
  48. Hemming DL, Switsur VR, Waterhouse JS, Heaton THE, Carter AHC (1998) Climate and the stable carbon isotope composition of tree ring cellulose: an intercomparison of three tree species. Tellus 50B:25–32Google Scholar
  49. IPCC Climate Change (2007) The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, 996 ppGoogle Scholar
  50. Jaggi M, Saurer M, Fuhrer J, Siegwolf R (2002) The relationship between the stable carbon isotope composition of needle bulk material, starch, and tree rings in Picea abies. Oecologia 131:325–332CrossRefGoogle Scholar
  51. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. Holocene 8:455–471CrossRefGoogle Scholar
  52. Keeling CD, Whorf TP, Wahlen M, Plicht JV (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670CrossRefGoogle Scholar
  53. Kelly PM, Leuschner HH, Briffa KR, Harris IC (2002) The climatic interpretation of pan-European signature years in oak ring-width series. Holocene 12(6):689–694CrossRefGoogle Scholar
  54. Knöller K, Boettger T, Haupt M, Weise SM (2007) Routine hydrogen isotope measurements of cellulose nitrate by high temperature pyrolysis—reference materials and precision. Rapid Commun Mass Spectrom 21:3085–3092CrossRefGoogle Scholar
  55. Kohn MJ, Welker JM (2005) On the temperature correlation of δ18O in modern precipitation. Earth Planet Sci Lett 231(1–2):87–96CrossRefGoogle Scholar
  56. Leavitt SW (2008) Current advances in tree-ring isotope dendrochronology and reconstruction of climatic conditions in recent centuries. In: Geol. Assoc. Canada annual meeting, 26–28 May 2008. SY4: recent advances in isotopic reconstruction of climatic changes over the last centuries - temperature and precipitation series. Quebec City, 26 May 2008Google Scholar
  57. Leavitt SW, Danzer SR (1993) Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Anal Chem 65:87–89CrossRefGoogle Scholar
  58. Leavitt SW, Long A (1982) Evidence for 13C/12C fractionation between tree leaves and wood. Nature 298:742–744CrossRefGoogle Scholar
  59. Legrand JP (1978) Fluctuations météorologiques, vendanges et activité solaire. La Météorologie VI(12):73–89Google Scholar
  60. Lipp J, Trimborn P, Fritz P, Moser H, Becker B, Frenzel B (1991) Stable isotopes in tree-ring cellulose and climatic change. Tellus 43B:322–330Google Scholar
  61. Livingston NJ, Spittlehouse DL (1996) Carbon isotope fractionation in tree ring early and late wood in relation to intra-growing season water balance. Plant Cell Environ 19(6):768–774CrossRefGoogle Scholar
  62. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  63. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  64. McCarroll D, Pawellek F (2001) Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11:517–526CrossRefGoogle Scholar
  65. Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties and limitations. Geophys Res Lett 6(6):759–762CrossRefGoogle Scholar
  66. Masson-Delmotte V, Raffalli-Delerce G, Danis PA, Yiou P, Stievenard M, Guibal F, Mestre O, Bernard V, Goosse H, Hoffmann G, Jouzel J (2005) Changes in European precipitation seasonality and in drought frequencies revealed by a four century long tree-ring isotopic record from Brittany, western France. Clim Dyn 24:57–69CrossRefGoogle Scholar
  67. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997CrossRefGoogle Scholar
  68. Menzel A (2005) A 500 year pheno-climatological view on the 2003 heatwave in Europe assessed by grape harvest dates. Meteorol Z 14(1):75–77CrossRefGoogle Scholar
  69. Moberg A, Sonechkin DM, Holmgren K et al (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  70. Moisselin JM, Schneider M, Canellas C, Mestre O (2002) Les changements climatiques en France au XXe siècle: étude des longues séries homogénéisées de données de température et de précipitations. La Météorologie 38:45–56Google Scholar
  71. Mook WG, Koopmans AF, Carter AF, Keeling CD (1983) Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide 1: results from Land stations. J Geophys Res 88:10915–10933CrossRefGoogle Scholar
  72. Nicault A, Rathgeber C, Tessier L et al (2001) Intra-annual variations of radial growth and ring structure. Ann For Sci 58(7):769–784CrossRefGoogle Scholar
  73. Overpeck J, Hughen K, Hardy D et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256CrossRefGoogle Scholar
  74. Pal JS, Giorgi F, Bi XQ (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31(13), Art. No. L13202Google Scholar
  75. Planton S, Terray L (2007) Détection et attribution à l’échelle régionale: le cas de la France. La Météorologie 58:25–29Google Scholar
  76. Polton JC (1995) Tourisme et nature au XIXe siècle. Guides et itinéraires de la forêt de Fontainebleau (vers 1820–1880). Edition du CTHS, Paris, p 295Google Scholar
  77. Raffalli-Delerce G, Masson-Delmotte V, Dupouey JL, Stievenard M, Breda N, Moisselin JM (2004) Reconstruction of summer droughts using tree-ring cellulose isotopes: a calibration study with living oaks from Brittany (western France). Tellus 56B:160–174Google Scholar
  78. Robertson I, Rolfe J, Switsur VR, Carter AHC, Hall MA, Barker AC, Waterhouse JS (1997a) Signal strength and climate relationships in the 13C/12C ratios of tree ring cellulose from oak in southwest Finland. Geophys Res Lett 24:1487–1490CrossRefGoogle Scholar
  79. Robertson J, Waterhouse JS, Barker AC, Carter AHC, Switsur VR (1997b) Signal strength and climate relationships in 13C/12C of tree ring cellulose from oak in east England. J Geophys Res 102:19507–19516CrossRefGoogle Scholar
  80. Robertson J, Waterhouse JS, Barker AC, Carter AHC, Switsur VR (2001) Oxygen isotope ratios of oak in east England: implications for reconstructing the isotopic composition of precipitation. Earth Planet Sci Lett 191:21–31CrossRefGoogle Scholar
  81. Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35CrossRefGoogle Scholar
  82. Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitations. In: KLLPK Swart, McKenzie J, Savin S (eds) Climate change in continental isotopic records. AGU Geophysical Monograph, pp 1–37Google Scholar
  83. Saurer M, Siegenthaler U, Schweingruber F (1995) The Climate–Carbone isotope relationship in tree rings and the significant of site conditions. Tellus 47B:320–330Google Scholar
  84. Saurer M, Schweingruber F, Vaganov EA, Shiyatov SG, Siegwolf R (2002) Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys Res Lett 29(10):1–4Google Scholar
  85. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heat waves. Nature 427:332–336CrossRefGoogle Scholar
  86. Séchet G (2004) Quel temps! Chronique de la météo de 1900 à nos jours. Hermé, Paris, p 256Google Scholar
  87. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209CrossRefGoogle Scholar
  88. Sternberg L, De Niro M, Savidge R (1986) Oxygen isotope exchange between metabolites and water during biochemichal reactions leading to cellulose synthesis. Plant Physiol 82:423–427CrossRefGoogle Scholar
  89. Stuiver M, Burk RL, Quay PD (1984) 13C/12C ratios in tree-rings and the transfer of biospheric carbon to the atmosphere. J Geophys Res 89:11731–11748CrossRefGoogle Scholar
  90. Switsur R, Waterhouse J (1998) Stable isotopes in tree ring cellulose. In: Griffiths EH (ed) Stable isotopes. BIOS Scientific, Oxford, pp 303–321Google Scholar
  91. Switsur R, Waterhouse JS, Field EM, Carter AHC (1996) Climatic signals from stable isotopes in oak trees from East Anglia, Great Britain. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment and humanity. Radiocarbon. Department of Geosciences, University of Arizona, Tucson, pp 637–645Google Scholar
  92. Szczepanek M, Pazdur A, Pawelczyk S, Bottger T, Haupt M, Halas S, Bednarz Z, Krapiec M, Szychowska-Krapiec E (2006) Hydrogen, carbon and oxygen isotopes in pine and oak tree rings from Southern Poland as climatic indicators in years 1900–2003. Geochronometria 25:67–76Google Scholar
  93. Terwilliger VJ, DeNiro MJ (1995) Hydrogen isotope fractionation in wood-producing avocado seedlings: biological constraints to paleoclimatic interpretations of δD values in tree ring cellulose nitrate. Geochim Cosmochim Acta 59(24):5199–5207CrossRefGoogle Scholar
  94. Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182CrossRefGoogle Scholar
  95. Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Robertson I (2002) Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth Planet Sci Lett 201(1):421–430CrossRefGoogle Scholar
  96. Wershaw RL, Friedman I, Heller SJ (1966) Hydrogen isotope fractionation in water passing through trees. In: Hobson F, Speers M (eds) Advances in organic geochemistry. Pergamon, New York, pp 55–67Google Scholar
  97. Williams DG, Coltrain JB, Lott M, English NB, Ehleringer JR (2005) Oxygen isotopes in cellulose identify source water for archaeological maize in the American Southwest. J Archaeol Sci 32(6):931–939CrossRefGoogle Scholar
  98. Wilson AT, Grinsted MJ (1977) 12C/13C in cellulose and lignin as paleothermometers. Nature 265:133–135CrossRefGoogle Scholar
  99. Yakir D, DeNiro MJ (1990) Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba. L. Plant Physiol 93:325–332CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • N. Etien
    • 1
    • 7
  • V. Daux
    • 1
    • 2
  • V. Masson-Delmotte
    • 1
  • O. Mestre
    • 3
  • M. Stievenard
    • 1
  • M. T. Guillemin
    • 1
  • T. Boettger
    • 4
  • N. Breda
    • 5
  • M. Haupt
    • 4
  • P. P. Perraud
    • 6
  1. 1.Laboratoire des Sciences du Climat et de l’Environnement (IPSL, UMR CEA-CNRS 1572)Gif-sur-YvetteFrance
  2. 2.Paris 6 UniversityParisFrance
  3. 3.Direction de la ClimatologieMétéo FranceFrance
  4. 4.UFZ-Umweltforschungszentrum Leipzig-Halle GmbHSektion HydrogeologieAG PaläoklimatologieGermany
  5. 5.INRA-Equipe Phytoécologie (UMR INRA-UHP “Ecologie et écophysiologie forestières”)ChampenouxFrance
  6. 6.Office National des ForêtsEureFrance
  7. 7.LSCE, L’Orme des MerisiersCEA SaclayFrance

Personalised recommendations