Climatic Change

, Volume 92, Issue 3–4, pp 343–387 | Cite as

A history of ENSO events since A.D. 1525: implications for future climate change

Article

Abstract

Reconstructions of past climate are important for providing a historical context for evaluating the nature of 20th century climate change. Here, a number of percentile-based palaeoclimate reconstructions were used to isolate signals of both phases of El Niño–Southern Oscillation (ENSO). A total of 92 (82) El Niño (La Niña) events were reconstructed since A.D. 1525. Significantly, we introduce the most comprehensive La Niña event record compiled to date. This annual record of ENSO events can now be used for independent verification of climate model simulations, reconstructions of ENSO indices and as a chronological control for archaeologists/social scientists interested in human responses to past climate events. Although extreme ENSO events are seen throughout the 478-year ENSO reconstruction, approximately 43% of extreme and 28% of all protracted ENSO events (i.e. both El Niño and La Niña phase) occur in the 20th century. The post-1940 period alone accounts for 30% of extreme ENSO years observed since A.D. 1525. These results suggest that ENSO may operate differently under natural (pre-industrial) and anthropogenic background states. As evidence of stresses on water supply, agriculture and natural ecosystems caused by climate change strengthens, studies into how ENSO will operate under global warming should be a global research priority.

Keywords

Southern Oscillation Index Event Capture Proxy Record Replication Threshold Proxy Skill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan R (2000) ENSO and climatic variability in the past 150 years. In: Diaz H, Markgraf V (eds) El Niño and the Southern Oscillation: multiscale variability and global and regional impacts. Cambridge University Press, Cambridge, pp 3–35Google Scholar
  2. Allan R, D’Arrigo R (1999) ‘Persistent’ ENSO sequences: how unusual was the 1990–1995 El Niño? Holocene 9(1):101–118Google Scholar
  3. Allan R, Lindsay J, Parker D (1996) El Niño Southern Oscillation and climate variability. CSIRO, Melbourne, AustraliaGoogle Scholar
  4. Baumgartner T, Michaelsen J, Thompson L, Shen G, Soutar A, Casey R (1989) The recording of interannual climatic change by high-resolution natural systems: tree rings, coral bands, glacial ice layers and marine varves. Aspects of climate variability in the Pacific and Western Americas. Geophysical monograph. Peterson, D. Washington. American Geophysical Union 55:1–14Google Scholar
  5. Berlage H (1931) On the relationship between thickness of tree rings of Djati and rainfall on Java. Tectona 24:939–953Google Scholar
  6. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus XVIII:820–829Google Scholar
  7. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172Google Scholar
  8. Boswijk G, Fowler A, Lorrey A, Palmer J, Ogden J (2006) Extension of the New Zealand kauri (Agathis australis) chronology to 1724 BC. Holocene 16(2):188–199Google Scholar
  9. Bouma M, Kovats R, Goubet S, Cox J, Haines A (1997) Global assessment of El Niño’s disaster burden. Lancet 350:1435–1438Google Scholar
  10. Bradley R (1996) Are there optimum sites for global paleotemperature reconstruction? In: Jones P, Bradley R, Jouzel J (eds) Climate variations and forcing mechanisms of the last 2000 years. Springer-Verlag, Berlin, pp 603–624Google Scholar
  11. Braganza K, Gergis J, Power S, Risbey J, Fowler A (2008) A new Pacific basin-wide index of El Niño-Southern Oscillation, A.D.1525-1982. Centre for Australian Weather and Climate Research (CAWCR) Technical Report No. 3, CAWCR, Melbourne, AustraliaGoogle Scholar
  12. Cane M (2005) The evolution of El Niño, past and future. Earth Planet Sci Lett 164:1–14Google Scholar
  13. Cane M, Braconnot P, Clement A, Gildor H, Joussaume S, Kageyama M, Khodri M, Paillard D, Tett S, Zorita E (2006) Progress in paleoclimate modeling. J Climate 19:5031–5057Google Scholar
  14. Caviedes C (2001) El Niño in history: storming throughout the ages. University of Florida, Gainesville, USAGoogle Scholar
  15. Chen C, Mc Carl B, Adams R (2001) Economic implications of potential ENSO frequency and strength shifts. Clim Change 49:147–159Google Scholar
  16. Cleaveland M, Stahle D, Therrell M, Villanueva-Diaz J, Burns B (2003) Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Clim Change 59:369–388Google Scholar
  17. Clement A, Cane M, Seager R (2001) An orbitally driven tropical source for abrupt climate change. J Climate 14(11):2369–2375Google Scholar
  18. Cobb K, Charles C, Cheng H, Edwards L (2003) El Niño/Southern Oscillation and tropical pacific climate during the last millenium. Nature 424:271–276Google Scholar
  19. Cole J, Dunbar R, Mc Clanahan T, Muthiga N (2000) Tropical pacific forcing of decadal SST variability in the Western Indian Ocean over the past two centuries. Science 287(5453):617–619Google Scholar
  20. Collins M (2005) El Niño or La Niña-like climate change? Clim Dyn 24:89–104Google Scholar
  21. Cook E, Seager R, Cane M, Stahle D (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81(1–2):93–134Google Scholar
  22. Crowley T (2000) Causes of climate change over the past 1,000 years. Science 289:270–277Google Scholar
  23. D’Arrigo R, Wilson R (2008) El Niño and Indian Ocean influences on Indonesian drought: implications for forecasting rainfall and crop productivity. Int J Climatol 28(5):611–616. doi:10.1002/joc.1654 Google Scholar
  24. D’Arrigo R, Jacoby G, Krusic P (1994) Progress in dendroclimatic studies in Indonesia. Terrestrial, Atmospheric and Oceanographic Sciences 5:349–363Google Scholar
  25. D’Arrigo R, Cook E, Wilson R, Allan R, Mann M (2005) On the variability of ENSO over the past six centuries. Geophys Res Lett 32(L03711):1–4Google Scholar
  26. D’Arrigo R, Wilson R, Palmer J, Krusic P, Curtis A, Sakulich J, Bijaksana S, Zulaikah S, Ngkoimani L, Tudhope A (2006) The reconstructed Indonesian warm pool sea surface temperatures from tree rings and corals: linkages to Asian monsoon drought and El Niño–Southern Oscillation. Paleoceanography 21(PA3005):PA3005/1-PA3005/13Google Scholar
  27. Dean (1993) IGBP pages/WDC-A for paleoclimatology contribution series 1993–021Google Scholar
  28. Deser C, Wallace J (1987) El Niño events and their relation to the Southern Oscillation: 1925–1986. J Geophys Res 92:14189–14196Google Scholar
  29. Diaz H, Pulwarty R (1994) An analysis of the time scales of variability in centuries-long ENSO-sensitive records in the last 1000 years. Clim Change 26:317–342Google Scholar
  30. Diaz H, Markgraf V (2000) El Niño and the Southern oscillation; multiscale variability and global and regional impacts. Cambridge University Press, CambridgeGoogle Scholar
  31. Dunbar R, Cole J (1999) Annual records of tropical systems (ARTS); recommendations for research. IGBP Science Series, Geneva, SwitzerlandGoogle Scholar
  32. Dunbar R, Wellington G, Colgan M, Glynn P (1994) Eastern Pacific sea surface temperature since 1600 AD: the d18O record of climate variability in Galapagos corals. Paleoceanography 9:291–316Google Scholar
  33. Eddy J (1977) Climate and the changing sun. Clim Change 1:173–190Google Scholar
  34. Fedorov A, Philander G (2000) Is El Niño changing? Science 288:1997–2002Google Scholar
  35. Fenwick P (2003) Reconstruction of past climates using pink pine (Halocarpus biformus) tree-ring chronologies. Soil Plant and Ecological Sciences, Lincoln University, Christchurch, New ZealandGoogle Scholar
  36. Folland C, Karl T, Christy J, Clarke R, Gruza G, Jouzel J, Mann M, Oerlemans J, Salinger M, Wang S (2001) Observed climate variability and change. In: Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, Johnson C (eds) Climate change 2001: the scientific basis. Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, United Kingdom and New YorkGoogle Scholar
  37. Fowler A (2005) Mean sea-level pressure composite mapping dendroclimatology: advocacy and an Agathis australis (kauri) case study. Clim Res 29:73–84Google Scholar
  38. Fowler A (2008) ENSO history recorded in Agathis australis (kauri) tree-rings Part B: 422 years of ENSO robustness. Int J Climatol 28(1):21–35Google Scholar
  39. Fowler A, Boswijk G (2003) Chronology stripping as a tool for enhancing the statistical quality of tree-ring chronologies. Tree Ring Research 59(2):53–62Google Scholar
  40. Fowler A, Palmer J, Salinger J, Ogden J (2000) Dendroclimatic interpretation of tree-rings in Agathis australis (Kauri) 2; evidence of a significant relationship with ENSO. J R Soc N Z 30(3):277–292Google Scholar
  41. Fowler A, Boswijk G, Ogden J (2004) Tree-ring studies on Agathis australis (Kauri): a synthesis of development work on late Holocene chronologies. Tree Ring Research 60(1):15–29Google Scholar
  42. Fowler A, Boswijk G, Gergis J, Lorrey A (2008) ENSO history recorded in Agathis australis (Kauri) tree-rings Part A: Kauri’s potential as an ENSO proxy. Int J Climatol 28(1):1–20Google Scholar
  43. Gagan M, Ayliffe L, Beck J, Cole J, Druffel E, Dunbar R, Schrag D (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19:45–64Google Scholar
  44. Gedalof Z, Mantua N (2002) A multi-century perspective of variability in the Pacific decadal oscillation: new insights from tree rings and coral. Geophys Res Lett 29(24):57/1–57/3Google Scholar
  45. Gergis J (2006) Reconstructing El Niño-Southern Oscillation; evidence from tree-ring, coral, ice and documentary palaeoarchives, A.D. 1525–2002. PhD Thesis, School of Biological, Earth and Environmental Sciences. Sydney, University of New South Wales, AustraliaGoogle Scholar
  46. Gergis J, Fowler A (2005) Classification of synchronous oceanic and atmospheric El Niño–Southern Oscillation (ENSO) events for palaeoclimate reconstruction. Int J Climatol 25:1541–1565Google Scholar
  47. Gergis J, Fowler A (2006) How unusual was late twentieth century El Niño–Southern Oscillation (ENSO)? Assessing evidence from tree-ring, coral, ice and documentary archives, A.D. 1525–2002. Advances in Geosciences 6:173–179CrossRefGoogle Scholar
  48. Gergis J, Boswijk G, Fowler A (2005a) An update of modern Northland Kauri (Agathis australis) tree-ring chronologies 1: Puketi State forest. New Zealand tree-ring Site Report No.19, School of Geography and Environmental Science Working Paper 29, University of Auckland, New ZealandGoogle Scholar
  49. Gergis J, Boswijk G, Fowler A (2005b) An update of modern Northland Kauri (Agathis australis) tree-ring chronologies 2: Trounson Kauri Park. New Zealand tree-ring Site Report No.20, School of Geography and Environmental Science Working Paper 30, University of Auckland, New ZealandGoogle Scholar
  50. Gergis J, Braganza K, Fowler A, Risbey J, Mooney S (2006) Reconstructing El Niño–Southern Oscillation (ENSO) from high-resolution palaeoarchives. J Quat Sci 21(7):707–722Google Scholar
  51. Goddard L, Dilley M (2005) El Niño: catastrophe or opportunity. J Climate 18:651–665Google Scholar
  52. Goodwin I, Van Ommen T, Curran M, Mayewski P (2004) Mid latitude winter climate variability in the South Indian and Southwest Pacific regions since 1300 AD. Clim Dyn 22:783–794Google Scholar
  53. Greybill (1994) IGBP pages/WDC-A for paleoclimatology contribution series 1994–003Google Scholar
  54. Grissino-Mayer, Swetnam (1992) IGBP Pages/WDC-A for paleoclimatology contribution series 1992–012Google Scholar
  55. Grove R, Chappell J (2000) El Niño chronology and the history of global crises during the little ice age. In: Grove R, Chappell J (eds). El Niño-history and crisis. White Horse, Cambridge, pp 5–34Google Scholar
  56. Grow (2000) IGBP pages/WDC-A for paleoclimatology contribution series 2003–094Google Scholar
  57. Haberle S, Hope G, van der Kaars S (2001) Biomass burning in Indonesia and Papua New Guineas: natural and human induced fire events in the fossil record. Palaeogeogr Palaeoclimatol Palaeoecol 171:259–268Google Scholar
  58. Hanley D, Bourassa M, O’Brian J, Smith S, Spade E (2003) A quantitative evaluation of ENSO indices. J Climate 16:1249–1258Google Scholar
  59. Hansen J, Sato M, Ruedy R, Lo K, Lea D, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci U S A 103:14288–14293Google Scholar
  60. Hassan F (1981) Historical Nile floods and their implications for climatic change. Science 212:1142–1145Google Scholar
  61. Hendy E, Gagan M, Alibert C, McCulloch M, Lough J, Isdale P (2002) Abrupt decrease in tropical Pacific sea surface salinity at the end of the little ice age. Science 295:1511–1514Google Scholar
  62. Hendy E, Gagan M, Lough J (2003) Chronological control of coral records using luminescent lines and evidence for non-stationarity ENSO teleconnections in northeastern Australia. Holocene 13(2):187–199Google Scholar
  63. Hennessy K, Fitzharris B, Bates B, Harvey N, Howden S, Hughes L, Salinger J, Warrick R (2007) Australia and New Zealand. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  64. Holmes R, Adams R, Fritts H (1986) Users manual for program ARSTAN. Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin. University of Arizona, Tucson, pp 50–65Google Scholar
  65. Jansen E, Overpeck J, Briffa KR, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier W, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  66. Jolliffe IT (2002) Principal component analysis, 2nd edn. SpringerVerlag, New YorkGoogle Scholar
  67. Jones P, Bradley R (1992) Climate variations over the last 500 years. In: Bradley R, Jones P (eds) Climate since A.D. 1500. Routledge, London, pp 649–665Google Scholar
  68. Jones P, Mann M (2004) Climate over past millennia. Rev Geophys 42:1–42Google Scholar
  69. Kiladis G, Diaz H (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Climate 2:1069–1090Google Scholar
  70. Kovats R, Bouma M, Hajat S, Worrall E, Haines A (2003) El Niño and health. Lancet 362(9394):1481–1489Google Scholar
  71. Kuhnel I, Coates L (2000) El Niño–Southern Oscillation: related probabilities of fatalities from natural perils in Australia. Nat Hazards 22:117–138Google Scholar
  72. Kumar A, Hoerling M (1997) Interpretation and implications of the observed inter-El Niño variability. J Climate 10:83–91Google Scholar
  73. Lamb S (1982) Climate, history and the modern world. Routledge, LondonGoogle Scholar
  74. Linsley B, Wellington G, Schrag D (2000) Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 AD. Science 290:1145–1149Google Scholar
  75. Linsley B, Wellington G, Schrag D, Ren L, Salinger J, Tudhope A (2004) Geochemical evidence from corals for changes in the amplitude and spatial pattern of South Pacific interdecadal climate variability over the last 300 years. Clim Dyn 22:1–11Google Scholar
  76. Lough J (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeogr Palaeoclimatol Palaeoecol 204:115–143Google Scholar
  77. Lough J (2007) Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography 22 (PA2218). doi:10.1029/2006PA001377
  78. Lyon B, Barnston A (2005) The evolution of the weak El Niño of 2004–2005. US CLIVAR Variations 3(2):1–4Google Scholar
  79. Mann M (2003) On past temperatures and anomalous late-20th century warmth. Eos 84(27):1–3Google Scholar
  80. Mann M, Bradley R, Hughes M (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787Google Scholar
  81. Mann M, Bradley R, Hughes M (2000) Long-term variability in the El Niño/Southern Oscillation and associated teleconnections. In: Diaz H, Markgraf V (eds) El Niño and the Southern Oscillation; multiscale variability and global and regional impacts. Cambridge University Press, Cambridge, pp 327–372Google Scholar
  82. Mann M, Cane M, Zebiak S, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Climate 18:447–456Google Scholar
  83. Markgraf V, Diaz H (2000) The past-ENSO record; a review. In: Markgraf V, Diaz, H (eds) El Niño and the Southern Oscillation; multiscale variability and global and regional impacts. Cambridge University Press, New York, pp 465–488Google Scholar
  84. Mc Donald J, Drysdale R, Hill D (2004) The 2002–2003 El Niño recorded in Australian cave drip waters: implications for reconstructing rainfall histories using stalagmites. Geophys Res Lett 31:L22202/1–L22202/4Google Scholar
  85. Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao Z (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  86. Mendelssohn R, Bogard S, Schwing F, Palacious D (2005) Teaching old indices new tricks: a state-space analysis of El Niño related climate indices. Geophys Res Lett 32:L07709/1–L07709/4Google Scholar
  87. Mullan A (1995) On the linearity and stability of Southern Oscillation–climate relationships for New Zealand. Int J Climatol 15:1365–1386Google Scholar
  88. Murphy J, Whetton P (1989) A re-analysis of a tree-ring chronology from Java. Proc K Ned Akad Wet (Dendrochronology) Proceedings B 92(3):241–257Google Scholar
  89. Ortlieb L (2000) The documentary historical record of El Niño events in Peru: an update of the Quinn record (sixteenth through nineteenth centuries). In: Diaz H, Markgraf V (eds) El Niño and the Southern Oscillation: variability, global and regional impacts. Cambridge University Press, Cambridge, pp 207–295Google Scholar
  90. Patz J, Campbell-Lendrum D, Holloway T, Foley J (2005) Impact of regional climate change on human health. Nature 438:310–317Google Scholar
  91. Power S, Maylock M, Colman R, Wang X (2006) The predictability of inter-decadal changes in ENSO activity and ENSO teleconnections. J Climate 19:4755–4771Google Scholar
  92. Quinn W, Neal V (1992) The historical record of El Niño events. In: Bradley R, Jones P (eds) Climate since A.D. 1500. Routledge, London, pp 623–648Google Scholar
  93. Quinn W, Neal V, Antunez de Mayola S (1987) El Niño occurrences over the past four and a half centuries. J Geophys Res 92(C13):14449–14461Google Scholar
  94. Quinn T, Crowley T, Taylor F, Henin C, Joannot P, Join Y (1998) A multicentury stable isotope record from a New Caledonia coral: interannual and decadal SST variability in the southwest Pacific since 1657. Paleoceanography 13(4):412–426Google Scholar
  95. Rasmusson E, Carpenter T (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384Google Scholar
  96. Rasmusson E, Carpenter T (1983) The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon Weather Rev 111:517–528Google Scholar
  97. Reid G (1997) Solar forcing of global climate change since the mid 17th century. Clim Change 37:391–405Google Scholar
  98. Rodbell D, Seltzer G, Anderson D, Abbott M, Enfield D, Newman J (1999) An ~15 000-year record of El Niño driven alluviation in southwestern Ecuador. Science 283:516–520Google Scholar
  99. Salinger M, Renwick J, Mullan A (2001) Interdecadal Pacific oscillation and South Pacific climate. Int J Climatol 21:1705–1721Google Scholar
  100. Solow A (2006) An ENSO shift revisited. Geophys Res Lett 33(L22602):L22602/1–L22602/3Google Scholar
  101. Stahle D, Cleaveland M (2002) IGBP pages/WDC-A for paleoclimatology contribution series 2002–004Google Scholar
  102. Stahle D, D’Arrigo R, Krusic P, Cleaveland M, Cook E, Allan R, Cole J, Dunbar R, Therrell M, Gay D, Moore M, Stokes M, Burns B, Villanueva-Diaz J, Thompson L (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull Am Meteorol Soc 79(10):2137–2152Google Scholar
  103. Thompson L (1992) IGBP pages/WDC-A for paleoclimatology contribution series 1992–008Google Scholar
  104. Thompson L (2000) Ice core evidence for climate change in the tropics: implications for our future. Quat Sci Rev 19:19–35Google Scholar
  105. Thompson L, Mosley-Thompson E, Henderson K (2000) Ice-core palaeoclimate records in tropical South America since the last glacial maximum. J Quat Sci 15(4):377–394Google Scholar
  106. Thompson L, Mosley-Thompson E, Davis M, Henderson K, Brecher H, Zagorodnov V, Mashiotta T, Lin P, Mikhalenko V, Hardy D, Beer J (2002) Kilimanjaro ice core records: evidence of Holocenee climate change in tropical Africa. Science 298:589–593Google Scholar
  107. Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697Google Scholar
  108. Trenberth K (1997) The definition of El Niño. Bull Am Meteorol Soc 78(12):2771–2777Google Scholar
  109. Trenberth K, Hoar T (1996) The 1990–1995 El Niño Southern oscillation event: longest on record. Geophys Res Lett 23(1):57–60Google Scholar
  110. Trenberth K, Hoar T (1997) El Niño and climate change. Geophys Res Lett 24(23):3057–3060Google Scholar
  111. Trenberth K, Stepaniak D (2001) Indices of El Niño evolution. J Climate 14:1697–1701Google Scholar
  112. Trenberth K, Jones P, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick J, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquiz M, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New YorkGoogle Scholar
  113. Urban F, Cole J, Overpeck J (2000) Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature 407:989–993Google Scholar
  114. Von Storch H, Zwiers F (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  115. Wang S, Zhao Z (1981) Droughts and floods in China,1470–1979. In: Wigley T, Ingrasham M, Farmer G (eds) Climate and history. Cambridge University Press, Cambridge, pp 171–288Google Scholar
  116. Whetton P, Rutherfurd I (1994) Historical ENSO teleconnections in the eastern hemisphere. Clim Change 28:221–253Google Scholar
  117. Whetton P, Allan R, Rutherfurd I (1996) Historical ENSO teleconnections in the Eastern Hemisphere: comparisons with latest El Niño series of Quinn. Clim Change 32:103–109Google Scholar
  118. Wilson R, Tudhope A, Brohan P, Briffa K, Osborn T, Tett S (2006) Two-hundred-fifty years of reconstructed and modeled tropical temperatures. J Geophys Res 111(C10007):C10007/1–C10007/13Google Scholar
  119. Wolter K, Timlin M (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proceedings of the 17th climate diagnostics workshop, Norman Oklahoma, NOAA/NMC/CAC, pp 52–57Google Scholar
  120. Zhang Y, Wallace J, Battisti D (1997) ENSO-like interdecadal variability: 1900–1993. J Climate 10:1004–1020Google Scholar
  121. Zhang R, Rothstein L, Busalacchi A (1998) Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature 391:879–883Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity of MelbourneMelbourneAustralia
  2. 2.School of Geography and Environmental ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations