Climatic Change

, Volume 92, Issue 3–4, pp 389–416 | Cite as

The 1877–1878 El Niño episode: associated impacts in South America

  • Patricio Aceituno
  • Maríadel del Rosario Prieto
  • María Eugenia Solari
  • Alejandra Martínez
  • Germán Poveda
  • Mark Falvey
Article

Abstract

At times when attention on climate issues is strongly focused on the assessment of potential impacts of future climate change due to the intensification of the planetary greenhouse effect, it is perhaps pertinent to look back and explore the consequences of past climate variability. In this article we examine a large disruption in global climate that occurred during 1877–1878, when human influence was negligible. The mechanisms explaining this global disturbance are not well established, but there is considerable evidence that the major El Niño episode that started by the end of 1876 and peaked during the 1877–1878 boreal winter contributed significantly to it. The associated regional climate anomalies were extremely destructive, particularly in the Northern Hemisphere, where starvation due to intense droughts in Asia, South-East Asia and Africa took the lives of more than 20 million people. In South America regional precipitation anomalies were typical of El Niño events, with rainfall deficit and droughts in the northern portion of the continent as well as in northeast Brazil and the highlands of the central Andes (Altiplano). In contrast, anomalously intense rainfall and flooding episodes were reported for the coastal areas of southern Ecuador and Northern Perú, as well as along the extratropical West coast of the continent (central Chile, 30° S–40° S), and in the Paraná basin in the southeast region. By far the most devastating impacts in terms of suffering and loss of life occurred in the semiarid region of northeast Brazil where several hundreds of thousands of people died from starvation and diseases during the drought that started in 1877.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I: surface climate. Mon Wea Rev 116:505–524CrossRefGoogle Scholar
  2. Aceituno P (1989) On the functioning of the Southern Oscillation in the South American sector. Part II: upper-air circulation. J Climate 2:341–355CrossRefGoogle Scholar
  3. Aceituno P, Garreaud R (1995) The impact of the ENSO phenomenon in the rainfall regime along the Andes cordillera. Rev Chilena Ing Hidráulica 10(2):33–43Google Scholar
  4. Aceituno P, Vidal F (1990) Variabilidad interanual en el caudal de ríos andinos de Chile Central en relación con la temperatura de la superficie del mar en el Pacífico Central. Rev Sociedad Ing Hidráulica 5(1):7–19Google Scholar
  5. Aiskis E (1984) La gran crecida del río Paraná de 1983. Boletín Informativo N° 232:3–53. Organización Techint, Buenos AiresGoogle Scholar
  6. Allan RJ, Ansell TJ (2006) A new globally-complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2003. J Climate 19:5816–5842CrossRefGoogle Scholar
  7. Allan R, Lindesay J, Parker D (1996) El Niño Southern Oscillation and climatic variability. CSIRO Publishing, AustraliaGoogle Scholar
  8. Arteaga K, Tutasi P, Jiménez R (2006) Climatic variability related to El Niño in Ecuador—a historical background. Adv Geosci 6:237–241Google Scholar
  9. Barra de Cobo M (1878) El Paso de Los Andes. Editorial Claridad, MendozaGoogle Scholar
  10. Basadre J (1969) Historia de la República del Perú 1822–1933. Ed., Vol VIII, 6th edn. Universitaria, LimaGoogle Scholar
  11. Berlage HP (1957) Fluctuations in the general atmospheric circulation of more than one year, their nature and prognostic value. K Ned Meteor Inst Meded Vehr 69:1–152Google Scholar
  12. Berlage HP (1966) The Southern Oscillation and world weather. K Ned Meteor Inst Meded Verh 88:1–152Google Scholar
  13. Bjerknes J (1966) A possible response of the atmosphere Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829CrossRefGoogle Scholar
  14. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172CrossRefGoogle Scholar
  15. Camilloni I, Barros V (2000) The Parana River response to El Niño 1982–83 and 1997–98 events. J Hydrometeorology 1(5):412–430CrossRefGoogle Scholar
  16. Carbo P (1881) Estudios y conceptos referentes al dragado del Río Guayas y sus afluentes. Colección Universidad de Guayaquil, N° 6. Universidad de Guayaquil, EcuadorGoogle Scholar
  17. Carranza L (1892) Contracorriente observada en Paita y Pacasmayo en 1891. Bol Soc Geog Lima 2:344–345Google Scholar
  18. Carrillo C (1892) Hidrografía oceánica: Las corrientes oceánicas y estudios de la Corriente Peruana ó de Humboldt. Bol Soc Geog Lima 2:72–110Google Scholar
  19. Caviedes CN (1973) Secas and El Niño: two simultaneous climatical hazards in South America. Proc Assoc Amer Geogr 5:44–49Google Scholar
  20. Compagnucci R, Vargas W (1993) Snowfall in the Cordillera de Los Andes and the ENSO events. In: Preprint 4th international conference on southern hemisphere heteorology and oceanography, Hobart—Australia, 29 March–2 April 1993Google Scholar
  21. Costa MCL (2004) Medical theories and urban management: Fortaleza’s 1877–79 drought. Historia Ciencias Saude Manguinhos 11:57–74Google Scholar
  22. Davis M (2001) Late Victorian holocausts: El Niño famines and the making of the third world. Ed. Verso, LondonGoogle Scholar
  23. Depettris CA, Rohrmann HR (1998) Las crecidas e inundaciones recurrentes en el litoral argentino. Revista Vivienda 431:14–16, Buenos Aires, ArgentinaGoogle Scholar
  24. Diaz A, Aceituno P (2003) Atmospheric circulation anomalies during episodes of enhanced and reduced convective cloudiness over Uruguay. J Climate 16:3171–3185CrossRefGoogle Scholar
  25. Eguiguren V (1894a) Las lluvias de Piura. Bol Soc Geogr Lima 4:241–258Google Scholar
  26. Eguiguren V (1894b) Estudios demográficos de la ciudad de Piura—Sección de Demografía y Estadística. Bol Soc Geog Lima 4:68–74Google Scholar
  27. Escobar F, Aceituno P (1998) Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile central durante el invierno. Bull Inst Fr Etudes Andines 27(3):753–759Google Scholar
  28. Francou B, Pizarro L (1985) El Niño y la sequía en los altos Andes Centrales: Perú y Bolivia. Bull Inst Fr Etud Andines 14(1–2):1–18Google Scholar
  29. Garreaud R (1999) Multiscale analysis of the summertime precipitation over the central Andes. Mon Wea Rev 127:901–921CrossRefGoogle Scholar
  30. Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Climate 14:2779–2789CrossRefGoogle Scholar
  31. Gioda A, Prieto R (1999) Histoire des sécheresses andines: Potosí, El Niño et le Petit Age Glaciaire. La Météorologie 8(27):33–42Google Scholar
  32. Goldammer JG, Seibert B (1990) The impact of droughts and forest fires on tropical lowland rain forest of Eastern Borneo. In: Goldammer JG (ed) Fire in the tropical biota. Ecosystem processes and global challenges. Ecological studies 84. Springer, BerlinGoogle Scholar
  33. Greenfield G (2001) The realities of images. Imperial Brazil and the great drought. Trans Am Phil Soc 91(1):ii–148CrossRefGoogle Scholar
  34. Grimm AM, Barros V, Doyle ME (2000) Climate variability in Southern South America associated with El Niño and La Niña events. J Climate 13:35–58CrossRefGoogle Scholar
  35. Hamerly M (1987) Historia social y económica de la antigua provincia de Guayaquil 1763–1842, 2nd edn. Banco Central del Ecuador, Archivo Histórico del Guayas, GuayaquilGoogle Scholar
  36. Hastenrath S (1991) Climate dynamics of the tropics. Kluwer, AmsterdamGoogle Scholar
  37. Hastenrath S (2001) Variations of East African climate during the past two centuries. Clim Change 50:209–217CrossRefGoogle Scholar
  38. Hastenrath S, Heller L (1977) Dynamics of climatic hazards in Northeast Brazil. Q J R Met Soc 103:77–92CrossRefGoogle Scholar
  39. Hastenrath S, Castro LC, Aceituno P (1987) The Southern Oscillation in the tropical Atlantic sector. Contrib Atmos Phys 60:447–463Google Scholar
  40. Hocquenghem AM, Ortlieb L (1992) El Niño events and abnormal rainfall along the coast of Perú: XVI–XIX centuries. Bull Inst Fr Etudes Andines 21(1):197–278, (in Spanish)Google Scholar
  41. Horel JD, Cornejo-Garrido AG (1986) Convection along the coast of northern Perú during 1983: spatial and temporal variation of cloud and rainfall. Mon Wea Rev 114:2091–2105CrossRefGoogle Scholar
  42. Huertas L (2001) Diluvios Andinos a través de las fuentes documentales. Fondo Editorial PUCP, LimaGoogle Scholar
  43. Karoly DJ (1989) Southern Hemisphere circulation features associated with El Niño—Southern Oscillation events. J Climate 2:1239–1252CrossRefGoogle Scholar
  44. Kiladis G, Diaz HF (1986) An analysis of the 1877–78 ENSO episode and comparison with 1982–83. Mon Wea Rev 114:1035–1047CrossRefGoogle Scholar
  45. Kiladis G, Diaz HF (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Climate 2:1069–1090CrossRefGoogle Scholar
  46. Kousky V (1979) Frontal influences on Northeast Brazil. Mon Wea Rev 107:1140–1153CrossRefGoogle Scholar
  47. Kousky VE, Kagano MT, Cavalcanti IFA (1984) A review of the Southern Oscillation: oceanic–atmospheric circulation changes and related rainfall anomalies. Tellus 36A:490–504CrossRefGoogle Scholar
  48. Lockyer WJS (1906) Barometric variations of long duration over large areas. Proc Roy Soc London 78:43–60CrossRefGoogle Scholar
  49. Mabres A, Woodman R, Zeta R (1993) Algunos apuntes históricos adicionales sobre la cronología de El Niño. Bull Inst Fr Etudes Andines 22(1):395–406Google Scholar
  50. Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in Central Chile and associated circulation anomalies. J Climate 16:281–296CrossRefGoogle Scholar
  51. Montecinos A, Diaz A, Aceituno P (2000) Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. J Climate 13:746–758CrossRefGoogle Scholar
  52. Mossman RC (1914) Southern hemisphere seasonal correlations. Symons’s Met Mag 48:2–6Google Scholar
  53. Mossman RC (1923) On Indian rainfall in relation to South American weather. Memoirs Indian Meteor Department 23:157–242Google Scholar
  54. Motor Columbus y Asociados (1979) Estudios de crecidas ríos Paraná y Paraguay. Entidad Binacional Yaciretá, Buenos AiresGoogle Scholar
  55. Moura AD, Shukla J (1981) On the dynamics of droughts in northeast Brazil: observation, theory, and numerical experiments with a general circulation model. J Atmos Sci 38:2653–2675CrossRefGoogle Scholar
  56. NWS/CPC: National Weather Service, Climate Prediction Center, NCEP, NOAA (2007) Monthly atmospheric and SST Indices. http://www.cpc.ncep.noaa.gov/data/indices/
  57. Ortega L (1999) Las inundaciones en Santiago de Chile durante el invierno de 1877. Anales Inst Ingenieros (Chile) 111(2):58–64Google Scholar
  58. Ortlieb L (1994) Major historical rainfalls in central Chile and the chronology of ENSO events during the XVI-XIX centuries. Rev Chilena Historia Natural 67:463–485Google Scholar
  59. Ortlieb L (2000) The documented historical record of El Niño events in Perú: an update of the Quinn record (sixteen through nineteen centuries). In: Diaz HF, Markgraf V (eds) El Niño and the Southern Oscillation: multiscale variability and global and regional impacts. Cambridge University Press, CambridgeGoogle Scholar
  60. Paoli C, Cacik P (2000) Régimen de crecidas y análisis de caudales máximos. In: Paoli C, Schreider M (eds) El Río Paraná en su tramo medio. Tomo I, Universidad Nacional del Litoral, Santa FeGoogle Scholar
  61. Pentimalli M, Rodríguez G (1988) Las razones de la multitud: hambrunas, motines y subsistencia en Cochabamba (1878–179). Revista Estado y Sociedad, La PazGoogle Scholar
  62. Pisciottano GJ, Díaz AF, Cazes G et al (1994) El Niño–Southern Oscillation impact on rainfall in Uruguay. J Climate 7:1286–1302CrossRefGoogle Scholar
  63. Pochat V (1996) Las mayores crecidas en la cuenca del Plata. In: Final report of the inter-American seminar-workshop on reduction of the vulnerability to floods in river basins (Appendix 4.1). Foz de Iguazu, Brazil, 29 Nov–1 Dec 1995.Google Scholar
  64. Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large-scale ocean–atmospheric phenomena. J Climate 10:2690–2702CrossRefGoogle Scholar
  65. Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on earth): enhanced ocean–atmosphere–land interaction by a low-level jet. Geophys Res Lett 27:1675–1678CrossRefGoogle Scholar
  66. Poveda G, Jaramillo A, Gil MM et al (2001) Seasonality in ENSO related precipitation, river discharges, soil moisture, and vegetation index (NDVI) in Colombia. Water Res 37:2169–2178CrossRefGoogle Scholar
  67. Poveda G, Waylen PR, Pulwarty RS (2006) Annual and interannual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography Palaeoclimatology Palaeoecology 234:3–27CrossRefGoogle Scholar
  68. Prieto M, Herrera R, Dussel P (1999) Historical evidences of the Mendoza River streamflow fluctuations and their relationship with ENSO. Holocene 9(4):473–481CrossRefGoogle Scholar
  69. Prieto M, Gimeno L, García R et al (2001) Interannual oscillations and trend in the snow occurrence in the Argentine–Chilean Central Andes region since 1885. Australian Meteor Magazine 50(2):164–168Google Scholar
  70. Quinn WH, Neal VT (1992) The historical record of El Niño events. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, LondonGoogle Scholar
  71. Quinn WH, Zopf DO, Short KS et al (1978) Historical trends and statistics of the Southern Oscillation, El Niño and Indonesian drought. Fish Bull 76:663–678Google Scholar
  72. Quinn WH, Neal VT, Antúnez-de-Mayolo S (1987) El Niño occurrences over the past four and a half centuries. J Geophys Res 92(C13):14, 449–14,461CrossRefGoogle Scholar
  73. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Wea Rev 110:354–383CrossRefGoogle Scholar
  74. Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of SST, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407 doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  75. Rogers JC (1988) Precipitation variability in the Caribbean and the tropical Americas associated with the Southern Oscillation. J Climate 1:172–182CrossRefGoogle Scholar
  76. Ronchail J (1995) Interannual rainfall variability in Bolivia. Bull Inst Fr Etudes Andines 24(3):369–378, (in Spanish)Google Scholar
  77. Ropelewski C, Halpert M (1987) Global and regional scale precipitation associated with El Nino/Southern Oscillation. Mon Wea Rev 115:1606–1626CrossRefGoogle Scholar
  78. Ropelewski C, Halpert M (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Climate 2:268–284CrossRefGoogle Scholar
  79. Ropelewski CF, Halpert MS (1996) Quantifying Southern Oscillation–precipitation relationships. J Climate 9:1043–1059CrossRefGoogle Scholar
  80. Rutllant J, Fuenzalida H (1991) Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. Int J Climatology 11:63–76CrossRefGoogle Scholar
  81. Takahashi K (2004) The atmospheric circulation associated with extreme rainfall events in Piura, Perú, during the 1997–1998 and 2002 El Niño events. Ann Geophys 22:3917–3926Google Scholar
  82. Taulis E (1934) De la distribution des pluies au Chili. Materiaux pour l’ Etudes des Calamités, Part 1:3–20. Société de Geographie de Geneve, GenevaGoogle Scholar
  83. Trenberth K, Stepaniak DP (2001) Indices of El Niño evolution. J Climate 14:1697–1701CrossRefGoogle Scholar
  84. Velasco I, Frisch JM (1987) Mesoscale convective complexes in the Americas. J Geophys Res 92(D8):9591–9613CrossRefGoogle Scholar
  85. Vicuña-Mackenna B (1877) Ensayo histórico sobre el clima de Chile. Imprenta El Mercurio, ValparaisoGoogle Scholar
  86. Villa MA (2000) Vida e Morte no Sertão: História das Secas no Nordeste nos séculos XIX e XX. Ed. Atica, Sao PauloGoogle Scholar
  87. Vuille M, Bradley S, Keimig F (2000) Interannual climate variability in the central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res 105(D10):12447–12460CrossRefGoogle Scholar
  88. Walker GT, Bliss EW (1932) World weather V. Mem Roy Meteor Soc 4:53–84Google Scholar
  89. Wolf T (1892) Geografía y Geología del Ecuador, 1st edn. Colección Rescate, Universidad de Guayaquil, GuayaquilGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Patricio Aceituno
    • 1
  • Maríadel del Rosario Prieto
    • 2
  • María Eugenia Solari
    • 3
  • Alejandra Martínez
    • 4
  • Germán Poveda
    • 5
  • Mark Falvey
    • 1
  1. 1.Department of GeophysicsUniversidad de ChileSantiagoChile
  2. 2.Instituto Argentino de NivologíaGlaciología y Ciencias AmbientalesMendozaArgentina
  3. 3.Instituto de Ciencias SocialesUniversidad Austral de ChileValdiviaChile
  4. 4.Instituto Geofísico del PerúLimaPeru
  5. 5.Escuela de Geociencias y Medio AmbienteUniversidad Nacional de ColombiaMedellínColombia

Personalised recommendations