Climatic Change

, Volume 91, Issue 3–4, pp 351–374

Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt

  • Caroline A. Katsman
  • Wilco Hazeleger
  • Sybren S. Drijfhout
  • Geert Jan van Oldenborgh
  • Gerrit Burgers
Article

Abstract

Here we present a set of regional climate scenarios of sea level rise for the northeast Atlantic Ocean. In this study, the latest observations and results obtained with state-of-the-art climate models are combined. In addition, regional effects due to ocean dynamics and changes in the Earth’s gravity field induced by melting of land-based ice masses have been taken into account. The climate scenarios are constructed for the target years 2050 and 2100, for both a moderate and a large rise in global mean atmospheric temperature (2 °C and 4 °C in 2100 respectively). The climate scenarios contain contributions from changes in ocean density (global thermal expansion and local steric changes related to changing ocean dynamics) and changes in ocean mass (melting of mountain glaciers and ice caps, changes in the Greenland and Antarctic ice sheets, and (minor) terrestrial water-storage contributions). All major components depend on the global temperature rise achieved in the target periods considered. The resulting set of climate scenarios represents our best estimate of twenty-first century sea level rise in the northeast Atlantic Ocean, given the current understanding of the various contributions. For 2100, they yield a local rise of 30 to 55 cm and 40 to 80 cm for the moderate and large rise in global mean atmospheric temperature, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley RB, Clark P, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460CrossRefGoogle Scholar
  2. Bahr DBN, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102:20355–20362CrossRefGoogle Scholar
  3. Bassett SE, Milne GA, Bentley MJ, Huybrechts P (2007) Modelling Antarctic sea-level data to explore the possibility of a dominant Antarctic contribution to meltwater pulse 1A. Quat Sci Rev 26:2113–2127CrossRefGoogle Scholar
  4. Bindoff N, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Qur C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate change 2007: The physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  5. Boyer TP, Levitus S, Antonov JI, Locarnini RA, Garcia HE (2005) Linear trends in salinity for the World Ocean, 1955–1998. Geophys Res Lett 32:L01604. doi:10.1029/2004GL021791 CrossRefGoogle Scholar
  6. Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106CrossRefGoogle Scholar
  7. Cazenave A, Nerem RS (2004) Present-day sea-level change: observations and causes. Rev Geophys 42:RG3001. doi:10.1029/2003RG000139 CrossRefGoogle Scholar
  8. Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Chapter 11. Changes in sea level. In: Houghton JT et al (eds) Climate Change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate Change. Cambridge University Press, Cambridge, pp 639–693Google Scholar
  9. Church JA, White NJ (2006) A twentieth century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi:10.1029/2005GL02482 CrossRefGoogle Scholar
  10. Clark PU, Mitrovica JX, Milne GA, Tamisiea ME (2002) Sea-level fingerprining as a direct test for the source of global melt water pulse 1A. Science 295:2438–2441Google Scholar
  11. Collins WD, Bitz CM, Blackmon MI, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3: CCSM3. J Climate 19:2122–2143. doi:10.1175/JCLI3761.1 CrossRefGoogle Scholar
  12. Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: A 2004 snapshot. Occasional Paper 58. University of Colorado, Institute of Arctic and Alpine Research. http://instaar.colorado.edu/other/occ_papers.htm
  13. Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J Int 46:647–667. doi:10.1111/j.1365-246X.1976.tb01252.x Google Scholar
  14. Flato GM (2005) The third generation coupled global climate model (CGCM3). http://www.cccma.ec.gc.ca/models/cgcm3.shtml
  15. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) ClimateCarbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353CrossRefGoogle Scholar
  16. Furevik T, Bentsen M, Drange H, Kvamsto N, Sorteberg A (2003) Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51CrossRefGoogle Scholar
  17. Gerdes R, Hurlin W, Griffies S (2006) Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Model 12:416–435CrossRefGoogle Scholar
  18. Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  19. Gregory JM, Church JA, Boer GJ, Dixon KW, Flato GM, Jackett DR, Lowe JA, O’Farrell SP, Roeckner E, Russell GL, Stouffer RJ, Winton M (2001) Comparison of results from several AOGCMs for global and regional sea-level change 1900–2100. Clim Dyn 18:241–253CrossRefGoogle Scholar
  20. Gregory JM, Huybrechts P (2006) Ice sheet contributions to future sea-level change. Philos Trans R Soc Lond A 364:1709–1731. doi:10.1098/rsta.2006.1796 CrossRefGoogle Scholar
  21. Gregory JM, Oerlemans H (1998) Simulated future sea-level rise due to glacier melt based on regionally and seasonally resolved temperature change. Nature 391:474–476CrossRefGoogle Scholar
  22. Hegerl GC, Crowley T, Hyde W, Frame D (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440:1029–1032CrossRefGoogle Scholar
  23. Holgate SJ, Woodworth PL (2004) Evidence for enhanced coastal sea level rise during the 1990s. Geophys Res Lett 31:L07305CrossRefGoogle Scholar
  24. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate Change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 881Google Scholar
  25. Houghton JT, Meira Filho LG, Callender, BA, Harris N, Kattenberg A, Maskell K (eds) (1995) Climate Change 1995: the cience of Climate Change. Contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  26. Howat IM, Joughin I, Tulaczyk S, Gogineni S (2005) Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys Res Lett 32:L22502. doi:10.1029/2005GL024737 CrossRefGoogle Scholar
  27. Huybrechts P, Gregory JM, Janssens I, Wild M (2004) Modelling Antarctic and Greenland volume changes during the twentieth and twenty-first centuries forced by GCM time slice integrations. Glob Planet Change 42:83–105. doi:10.1016/j.gloplacha.2003.11.011 CrossRefGoogle Scholar
  28. Johannessen OM, Khvorostovsky K, Miles MW, Bobylev LP (2005) Recent ice-sheet growth in the interior of Greenland. Science 310:1013–1016. doi:10.1126/science.1115356.CrossRefGoogle Scholar
  29. Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenlands Jakobshavn Isbrae glacier. Nature 432:608–610. doi:10.1038/nature03130 CrossRefGoogle Scholar
  30. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Climate 19:3952–3972CrossRefGoogle Scholar
  31. K-1 model developers (2004) K-1 coupled model (MIROC) description. Technical report 1. Center for Climate System Research, University of TokyoGoogle Scholar
  32. Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33:L19501. doi:10129/2006GL027511 CrossRefGoogle Scholar
  33. Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J (2004) Greenland Ice Sheet: increased coastal thinning. Geophys Res Lett 31:L24402. doi:10.1029/2004GL021533 CrossRefGoogle Scholar
  34. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate Change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  35. Lenderink G, van Ulden AP, van den Hurk BJJM, Keller F (2007) Climate scenarios of temperature and precipitation for the Netherlands: a study on combining global and regional climate model results. Clim Dyn 29:157–176CrossRefGoogle Scholar
  36. Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2004) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354CrossRefGoogle Scholar
  37. Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229CrossRefGoogle Scholar
  38. Lucarini L, Russell GL (2002) Comparison of mean climate trends in the northern hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs. J Geophys Res 107(D15):4269. doi:10.1029/2001JD001247
  39. Meehl G, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007a) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate Change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  40. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007b) THE WCRP CMIP3 Multimodel Dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  41. Meier MF (1984) Contribution of small glaciers to global sea level. Science 226:1418–1421CrossRefGoogle Scholar
  42. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level ris ein the 21st century. Science 317:1064–1067. doi:10.1126/science.1143906 CrossRefGoogle Scholar
  43. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea level change. Nature 409:1026–1029CrossRefGoogle Scholar
  44. Ohmura A (2004) Cryosphere during the twentieth century, the state of the plane. IUGG Geophys Monogr 150:239–257Google Scholar
  45. Oppenheimer M (1998) Global warming and the stability of the West Antarctic Ice Sheet. Nature 393:325–332CrossRefGoogle Scholar
  46. Otto-Bliesner BL, Marshall SJ, OJT, Miller GH, Hu A, CAPE Last Interglaciation Project members (2006) Simulating Arctic climate warmth and ice-field retreat in the last interglaciation. Science 311:1751–1753. doi:10.1126/science.1120808 CrossRefGoogle Scholar
  47. Raper SCB, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–331CrossRefGoogle Scholar
  48. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell T, Tett SFB (2006) Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Climate 19:446–469CrossRefGoogle Scholar
  49. Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Climate 17:3409–3427CrossRefGoogle Scholar
  50. Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. doi:10.1029/2004GL020697 CrossRefGoogle Scholar
  51. Rignot EG, Casassa G, Gogineni P, Kanagaratman P, Krabill W, Pritchard H, Rivera A, Thomas R, Turner J, Vaughan D (2005) Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula. Geophys Res Lett 32:1–4CrossRefGoogle Scholar
  52. Rignot EG, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311:986–990CrossRefGoogle Scholar
  53. Rignot EG, Thomas RH (2002) Mass balance of polar ice sheets. Science 297:1502–1506CrossRefGoogle Scholar
  54. Scambos T, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:L18402. doi:10.1029/2004GL020670 CrossRefGoogle Scholar
  55. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao, MS (2004) Present day atmospheric simulations using GISS ModelE: comparison to in-situ, satellite and reanalysis data. J Climate 19:153–192CrossRefGoogle Scholar
  56. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlanioc thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23710CrossRefGoogle Scholar
  57. Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antractic and Greenland ice sheets. Science 315:1529–1532CrossRefGoogle Scholar
  58. Shepherd A, Wingham D, Rignot E (2004) Warm ocean is eroding West Antarctic Ice Sheet. Geophys Res Lett 31:L23402. doi:10.1029/2004GL02110 CrossRefGoogle Scholar
  59. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) (2007a) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  60. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (2007b) Summary for policymakers. In: IPCC, 2007: Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  61. Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe A, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406CrossRefGoogle Scholar
  62. Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabil W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306:255–258. doi:10.1126/science.1099650 CrossRefGoogle Scholar
  63. van de Wal RSW, Wild M (2001) Modelling the response of glaciers to climate change, applying volume-area scaling in combination with a high resolution GCM. Clim Dyn 18:359–366CrossRefGoogle Scholar
  64. van den Hurk BJJM, Klein Tank AMG, Lenderink, G, van Ulden AP, van Oldenborgh GJ, Katsman CA, van den Brink HW, Keller F, Bessembinder JJF, Burgers G, Komen GJ, Hazeleger W, Drijfhout SS (2006) KNMI Climate Change Scenarios 2006 for the Netherlands. Technical report WR-2006-01, KNMI. www.knmi.nl/climatescenarios
  65. van der Schrier G, Weber SL, Drijfhout SS (2004) Low-frequency sea-level variability in the Atlantic. Glob Planet Change 43:129–1442CrossRefGoogle Scholar
  66. van Ulden AP, van Oldenborgh GJ (2006) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Atmos Chem Phys 6:863–881CrossRefGoogle Scholar
  67. Vaughan DG (2008) West Antarctic ice sheet collapse—the fall and rise of a paradigm. Clim Change (in press)Google Scholar
  68. Velicogna I, Wahr J (2005) Greenland mass balance from GRACE. Geophys Res Lett 32:L18505CrossRefGoogle Scholar
  69. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267CrossRefGoogle Scholar
  70. Volodin EM, Diansky NA(2004) El-niño reproduction in coupled general circulation model of atmosphere and ocean. Russ Meteorol Hydrol 12:5–14Google Scholar
  71. Washington WM, Weatherly JW, Meehl GA, Semtner Jr AJ, Bettge T, Craig A, Strand Jr W, Arblaster J, Wayland V, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16:755–774CrossRefGoogle Scholar
  72. Wigley TML, Raper SCB (2005) Extended scenarios for glacier melt due to anthropogenic forcing. Geophys Res Lett 32:L05704. doi:10.1029/2004GL021238 CrossRefGoogle Scholar
  73. Woodward RS (1888) On the form and position of mean sea level. US Geol Surv Bull 48:87–170.Google Scholar
  74. Yu Y, Zhang X, Guo Y (2004) Global coupled ocean- atmosphere general circulation models in LASG/IAP. Adv Atmos Sci 21:444–455CrossRefGoogle Scholar
  75. Yukimoto S, Noda A (2002) Improvements of the Meteorological Research Institute Global Ocean-atmosphere Coupled GCM (MRI-CGCM2) and its climate sensitivity. Technical report 10, NIES, JapanGoogle Scholar
  76. Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A et al (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea level rise: 1992–2002. J Glaciol 51:509–527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Caroline A. Katsman
    • 1
  • Wilco Hazeleger
    • 1
  • Sybren S. Drijfhout
    • 1
  • Geert Jan van Oldenborgh
    • 1
  • Gerrit Burgers
    • 1
  1. 1.Global Climate DivisionRoyal Netherlands Meteorological Institute (KNMI)De BiltNetherlands

Personalised recommendations