Climatic Change

, Volume 90, Issue 3, pp 315–331 | Cite as

On geoengineering with sulphate aerosols in the tropical upper troposphere and lower stratosphere

  • A. F. Tuck
  • D. J. Donaldson
  • M. H. Hitchman
  • E. C. Richard
  • H. Tervahattu
  • V. Vaida
  • J. C. Wilson
Article

Abstract

This paper is in response to the Editorial Essay by Crutzen and the Editorial Comment by Cicerone in the August 2006 issue of Climatic Change. We reprise the evidence from atmospheric nuclear weapon testing in the 1950s and 1960s which is salient to the mooted maintenance of an artificial sulphate aerosol layer in the lower stratosphere, including a hitherto and now posthumous unpublished analysis of the 185W Hardtack data. We also review recent investigations by ourselves, which have considerable bearing on some relevant questions concerning meteorological dynamics, aerosol chemistry and physics and the photodissociation of stratospheric sulphuric acid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews AE, Boering KA, Wofsy SC, Daube BC, Jones DB, Alex S, Loewenstein M, Podolske JR, Strahan SE (2001) Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical barrier. J Geophys Res 106:10257–10274CrossRefGoogle Scholar
  2. Brewer AW (1960) The transfer of atmospheric ozone into the troposphere, MIT Planetary Circulation Project, paper presented at the United Nations Committee on the Effects of Radiation (UNSCEAR), Mass. Inst. of Technol., New York, January 1960Google Scholar
  3. Briggs J, Roach WT (1963) Aircraft observations near jet streams. Q J R Meteorol Soc 89:225–247CrossRefGoogle Scholar
  4. Brock CA, Hamill P, Wilson JC, Jonsson H, Chan KR (1995) Particle formation in the upper tropical troposphere: a source of nuclei for the stratospheric aerosol. Science 270:1650–1653CrossRefGoogle Scholar
  5. Brock CA, Schroder F, Karcher B, Petzold A, Busen R, Fiebig M (2000) Ultrafine particle size distributions measured in aircraft exhaust plumes. J Geophys Res 105:26555–26567CrossRefGoogle Scholar
  6. CIAP (1975) Climatic Impact Assessment Program, Monograph 1, ‘The Natural Stratosphere of 1974’, Chapter 6, DOT-TST-75-51, Department of Transportation, Washington, D. C. 20590Google Scholar
  7. Cicerone RJ (2006) Geoengineering: encouraging research and overseeing implementation. Clim Change 77:221–226CrossRefGoogle Scholar
  8. Crutzen PJ (1971) Ozone production rates in an oxygen–hydrogen–nitrogen oxide atmosphere. J Geophys Res 76:7311–7327CrossRefGoogle Scholar
  9. Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77:211–219CrossRefGoogle Scholar
  10. Danielsen EF (1964) Report on Project Springfield, DASA 1517, Defense Atomic Support Agency, Washington, D. C., 103 ppGoogle Scholar
  11. Danielsen EF (1968) Stratospheric–tropospheric exchange based upon radioactivity, ozone and potential vorticity. J Atmos Sci 25:502–518CrossRefGoogle Scholar
  12. Danielsen EF (1985a) Ozone transport, Chapter 3. In: Whitten RC, Prasad SS (eds) Ozone in the free atmosphere. Van Nostrand Reinhold, New YorkGoogle Scholar
  13. Danielsen EF (1985b) The importance of open systems and dispersive mixing to stratospheric–tropospheric exchange, private communication to A. F. Tuck, from whom copies are available on requestGoogle Scholar
  14. Danielsen EF (1993) In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger scale upwelling in tropical cyclones. J Geophys Res 98:8665–8682CrossRefGoogle Scholar
  15. Danielsen EF, Hipskind RS, Starr WL, Vedder JF, Gaines SE, Kley D, Kelly KK (1991) Irreversible transport in the stratosphere by internal waves of short vertical wavelength. J Geophys Res 96:17433–17452CrossRefGoogle Scholar
  16. Dessler AE, Hintsa EJ, Weinstock EM, Anderson JG, Chan KR (1995) Mechanisms controlling water vapor in the lower stratosphere: “A tale of two stratospheres”. J Geophys Res 100:23167–23172CrossRefGoogle Scholar
  17. Dobson GMB (1973) The laminated structure of ozone in the atmosphere. Q J R Meteorol Soc 99:599–607CrossRefGoogle Scholar
  18. Donaldson DJ, Vaida V (2006) The influence of organic films at the air-aqueous boundary on atmospheric processes. Chem Rev 106:1445–1461CrossRefGoogle Scholar
  19. Donaldson DJ, Tuck AF, Vaida V (2001) Spontaneous fission of atmospheric aerosol particles. Phys Chem Chem Phys 3:5270–5273CrossRefGoogle Scholar
  20. Donaldson DJ, Tuck AF, Vaida V (2003) Atmospheric photochemistry via vibrational overtone absorption. Chem Rev 103:4717–4729CrossRefGoogle Scholar
  21. Ellison GB, Tuck AF, Vaida V (1999) Atmospheric processing of organic aerosols. J Geophys Res 104:11633–11641CrossRefGoogle Scholar
  22. Feely HW, Spar J (1960) Tungsten-185 from nuclear bomb tests as a tracer for stratospheric meteorology. Nature 188:1062–1064CrossRefGoogle Scholar
  23. Feely HW, Seitz H, Lagomarsino RJ, Biscaye PE (1966) Transport and fallout of radioactive debris. Tellus 18:316–328Google Scholar
  24. Foot JS (1984) Aircraft measurements of the humidity in the lower stratosphere from 1977 to 1980 between 45° N and 65° N. Q J R Meteorol Soc 110:303–319Google Scholar
  25. Friedlander SK (1977) Smoke, dust and haze. John Wiley and Sons, NY, USA, p 135Google Scholar
  26. Gill PS, Graedel TE, Weschler CJ (1983) Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes. Rev Geophys 21:903–920CrossRefGoogle Scholar
  27. Gilman JB, Tervahattu H, Vaida V (2006) Interfacial properties of mixed films of long-chain organics at the air–water interface. Atmos Environ 40:6606–6614CrossRefGoogle Scholar
  28. Harvey VL, Hitchman MH, Pierce RB, Fairlie TDA (1999) Tropical aerosol in the Aleutian High. J Geophys Res 104:6281–6290CrossRefGoogle Scholar
  29. Hering WS (1966) Ozone and atmospheric transport processes. Tellus 18:329–336Google Scholar
  30. Hitchman MH, Huesmann AS (2007) A seasonal climatology of Rossby wave breaking in the 320–2000 K layer. J Atmos Sci 64:1992–1940CrossRefGoogle Scholar
  31. Hitchman MH, McKay M, Trepte CR (1994) A climatology of stratospheric aerosol. J Geophys Res 99:20684–20700CrossRefGoogle Scholar
  32. Johnston HS (1971) Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173:517–522CrossRefGoogle Scholar
  33. Karol IL (1972) Radioisotopes and Global Transport in the Atmosphere, Gidrometeoizdat, Leningrad; Israel Program for Scientific Translation, Keter House Publishing, Jerusalem, 1974Google Scholar
  34. Konopka P, Günther G, Müller R, dos Santos FHS, Schiller C, Ravegnani F, Ulanovsky A, Schlager H, Volk CM, Viciani S, Pan L, McKenna DS, Riese M (2006) Contribution of mixing to the upward transport across the TTL. Atmos Chem Phys Discuss 6:12217–12266Google Scholar
  35. Langford AO, O’Leary TJ, Proffitt MH, Hitchman MH (1996) Transport of the Pinatubo volcanic aerosol to a northern midlatitude site. J Geophys Res 100:9007–9016CrossRefGoogle Scholar
  36. List RJ, Salter LP, Telegadas K (1966) Radioactive debris as a tracer for investigating stratospheric motions. Tellus 18:345–354Google Scholar
  37. Lovejoy S, Schertzer D, Stanway JD (2001) Direct evidence of multifractal cascades from planetary scales down to 1 km. Phys Rev Lett 86:5200–5203CrossRefGoogle Scholar
  38. Mauldin LE, Zaun NH, McCormick MP, Guy JH, Vaughn WR (1985) Stratospheric Aerosol and Gas Experiment-II instrument – a functional description. Opt Eng 24:307–312Google Scholar
  39. Miller Y, Gerber RB (2006) Dynamics of vibrational overtone excitations of H2SO4, H2SO4.H2O: hydrogen-hopping and photodissociation processes. J Am Chem Soc 128:9594–9595CrossRefGoogle Scholar
  40. Miller Y, Gerber RB, Vaida V (2007) Photodissociation yields for vibrationally excited states of sulfuric acid under atmospheric conditions. Geophys Res Lett 34:L16820, DOI  10.1029/2007GL030529 CrossRefGoogle Scholar
  41. Mills MJ, Toon OB, Vaida V, Hintze PE, Kjaergaard HG, Schofield DP, Robinson TW (2005) Photolysis of sulfuric acid vapor by visible light as a source of the polar stratospheric CN layer. J Geophys Res 110:D08201, DOI  10.1029/2004JD005519 CrossRefGoogle Scholar
  42. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone. Nature 249:810–814CrossRefGoogle Scholar
  43. Murgatroyd RJ (1957) Winds and temperatures between 20 km and 100 km – a review. Q J R Meteorol Soc 83:417–458CrossRefGoogle Scholar
  44. Murgatroyd RJ (1965) Ozone and water vapour in the upper troposphere and lower stratosphere, ‘Meteorological Aspects of Atmospheric Radioactivity’, W. M. O. Technical Note No. 68, 68–94, World Meteorological Organization, GenevaGoogle Scholar
  45. Murgatroyd RJ, Clews CJB (1949) Wind at 100,000 feet over S. E. England. Geophys Mem Meteorol Office 83, H. M. S. O., LondonGoogle Scholar
  46. Murgatroyd RJ, Singleton F (1961) Possible meridional circulations in the stratosphere and mesosphere. Q J R Meteorol Soc 87:125–135CrossRefGoogle Scholar
  47. Murphy DM, Thomson DS, Mahoney MJ (1998) In situ measurements of organics, meteoritic material, mercury and other elements in aerosols at 5 to 19 kilometers. Science 282:1664–1669CrossRefGoogle Scholar
  48. Newell RE (1963) The general circulation of the atmosphere and its effects on the movements of trace substances. J Geophys Res 68:3949–3962Google Scholar
  49. Newman PA, Harris NRP, Adriani A, Amanatidis GT, Anderson JG, Braathen GO, Brune WH, Carslaw KS, Craig MS, DeCola PL, Guirlet M, Hipskind RS, Kurylo MJ, Küllmann H, Larsen N, Mégie GJ, Pommereau J-P, Poole LR, Schoeberl MR, Stroh F, Toon OB, Trepte CR, Van Roozendael M (2002) An overview of the SOLVE/THESEO 2000 campaign. J Geophys Res 107(D20):8259, DOI  10.1029/2001JD001303 CrossRefGoogle Scholar
  50. O’Connor FM, Vaughan G, De Backer H (1999) Observations of subtropical air in the European midlatitude, lower stratosphere. Q J R Meteorol Soc 125:2965–2986CrossRefGoogle Scholar
  51. Postel GA, Hitchman MH (1999) A climatology of Rossby wave breaking along the subtropical tropopause. J Atmos Sci 56:359–373CrossRefGoogle Scholar
  52. Reed RJ, Danielsen EF (1957) Fronts in the vicinity of the tropopause. Arch Meteorol Geophys Bioklimatol 11:1–17CrossRefGoogle Scholar
  53. Reed RJ, German KE (1965) A contribution to the problem of stratospheric diffusion by large-scale mixing. Mon Weather Rev 93:313–321CrossRefGoogle Scholar
  54. Richard EC, Tuck AF, Aikin KC, Kelly KK, Herman RL, Troy RF, Hovde SJ, Rosenlof KH, Thompson TL, Ray EA (2006) High-resolution airborne profiles of CH4, O3 and water vapor near tropical Central America in late January to early February 2004. J Geophys Res 111:D13304, DOI  10.1029/2005JD006513 CrossRefGoogle Scholar
  55. Ridley B, Atlas E, Selkirk H, Pfister L, Montzka D, Walega J, Donnelly S, Stroud V, Richard E, Kelly K, Tuck A, Thompson T, Reeves J, Baumgardner D, Rawlins WT, Mahoney M, Herman R, Friedl R, Moore F, Ray E, Elkins J (2004) Convective transport of reactive constituents to the tropical and mid-latitude tropopause region: I. Observations. Atmos Environ 38:1259–1274CrossRefGoogle Scholar
  56. Russell PB, Pfister L, Selkirk HB (1993) The tropical experiment of the Stratosphere–Troposphere Exchange Project (STEP): science objectives, operations and summary findings. J Geophys Res 98:8563–8589CrossRefGoogle Scholar
  57. Sawyer JS (1951) The dynamical systems of the lower stratosphere. Q J R Meteorol Soc 77:480–483CrossRefGoogle Scholar
  58. Schertzer D, Lovejoy S (1985) The dimension and intermittency of atmospheric dynamics. Turbul Shear Flows 4:7–33, Springer, New YorkGoogle Scholar
  59. Shapiro MA (1980) Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J Atmos Sci 37:994–1004CrossRefGoogle Scholar
  60. SPARC (2006) Assessment of Stratospheric Aerosol Properties. In: L. Thomason and Th. Peter (eds) World Climate Research Program-124, WMO/TD-No. 1295, SPARC Report No. 4, 322 ppGoogle Scholar
  61. Tervahattu H, Hartonen K, Kerminen VM, Kupiainen K, Aarnio P, Koskentalo F, Tuck AF, Vaida V (2002a) New evidence of an organic layer on marine aerosols. J Geophys Res 107(D7):4053, DOI  10.1029/2000JD00282 CrossRefGoogle Scholar
  62. Tervahattu H, Juhanoja J, Kupiainen K (2002b) Identification of an organic coating on marine aerosol particles by TOF-SIMS. J Geophys Res 107(D16):4319, DOI  10.1029/2001JD001403 CrossRefGoogle Scholar
  63. Tervahattu H, Juhanoja J, Vaida V, Tuck AF, Niemi JV, Kupiainen K, Kulmala M, Vehkamaki H (2005) Fatty acids on continental sulfate aerosol particles. J Geophys Res 110:D06207, DOI  10.1029/2004JD005400 CrossRefGoogle Scholar
  64. Trepte CR, Hitchman MH (1992) Tropical stratospheric circulation deduced from satellite aerosol data. Nature 355:626–628CrossRefGoogle Scholar
  65. Tuck AF (2008) ATMOSPHERIC TURBULENCE: A molecular dynamics perspective. Oxford University Press, OxfordGoogle Scholar
  66. Tuck AF, Baumgardner D, Chan KR, Dye JE, Elkins JW, Hovde SJ, Kelly KK, Loewenstein M, Margitan JJ, May RD, Podolske JR, Proffitt MH, Rosenlof KH, Smith WL, Webster CR, Wilson JC (1997) The Brewer–Dobson circulation in the light of high-altitude in situ aircraft observations. Q J R Meteorol Soc 123:1–69Google Scholar
  67. Tuck AF, Hovde SJ, Kelly KK, Mahoney MJ, Proffitt MH, Richard EC, Thompson TL (2003) Exchange between the upper tropical troposphere and the lower stratosphere studied with aircraft observations. J Geophys Res 108(D23):4734, DOI  10.1029/2003JD003399 CrossRefGoogle Scholar
  68. Tuck AF, Hovde SJ, Kelly KK, Reid SJ, Richard EC, Atlas EL, Donnelly SG, Stroud VR, Cziczo DJ, Murphy DM, Thomson DS, Elkins JW, Moore FL, Ray EA, Mahoney MJ, Friedl RR (2004) Horizontal variability 1–2 km below the tropical tropopause. J Geophys Res 109:D05310, DOI  10.1029/2003JD003942 CrossRefGoogle Scholar
  69. Vaida V, Kjaergaard HG, Hintze PE, Donaldson DJ (2003) Photolysis of sulfuric acid vapor by visible solar radiation. Science 299:1566–1568CrossRefGoogle Scholar
  70. Vaughan G, Timmis C (1998) Transport of near-tropopause air into the lower midlatitude stratosphere. Q J R Meteorol Soc 124:1559–1578CrossRefGoogle Scholar
  71. Weisenstein D, Bekki S (2006) Ch 6. Modeling. In: Thomason L, Peter TH (eds) SPARC assessment of stratospheric aerosol properties. World Climate Research Program-124, Toronto, pp 219–271Google Scholar
  72. Wilson JC, Jonsson HH, Brock CA, Toohey DW, Avallone LM, Baumgardner D, Dye JE, Poole LR, Woods DC, DeCoursey RJ, Osborn M, Pitts MC, Kelly KK, Chan KR, Ferry GV, Loewenstein M, Podolske JR, Weaver A (1993) In situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo: effect of reactions on sulfate aerosol. Science 261:1140–1143CrossRefGoogle Scholar
  73. Wilson JC, Lee S-H, Reeves JM, Brock CA, Jonsson HH, Lafleur BG, Loewenstein M, Podolske J, Atlas E, Boering K, Toon G, Fahey D, Bui TP, Diskin G, Moore F (2008) Steady state aerosol distributions in the extra-tropical lower stratosphere and the processes that maintain them. Atmos Chem Phys Discuss 8:3665–3692CrossRefGoogle Scholar
  74. World Meteorological Organization (1986) Stratosphere-Troposphere Exchange, Chapter 5, Atmospheric Ozone 1985, Global Ozone Research and Monitoring Project, Report No. 16, GenevaGoogle Scholar
  75. Wyslouzil BE, Wilemski G, Strey R, Heath CH, Dieregsweiler U (2006) Experimental evidence for internal structure in aqueous-organic nanodroplets. Phys Chem Chem Phys 8:54–57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. F. Tuck
    • 1
  • D. J. Donaldson
    • 2
  • M. H. Hitchman
    • 3
  • E. C. Richard
    • 4
  • H. Tervahattu
    • 5
  • V. Vaida
    • 6
  • J. C. Wilson
    • 7
  1. 1.Chemical Sciences Division 6NOAA Earth System Research LaboratoryBoulderUSA
  2. 2.Department of ChemistryUniversity of TorontoTorontoCanada
  3. 3.Atmospheric and Oceanic SciencesUniversity of WisconsinMadisonUSA
  4. 4.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  5. 5.Nordic Envicon OyHelsinkiFinland
  6. 6.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA
  7. 7.Department of EngineeringUniversity of DenverDenverUSA

Personalised recommendations