Climatic Change

, Volume 90, Issue 4, pp 413–441 | Cite as

Sensitivity of European glaciers to precipitation and temperature – two case studies

  • Daniel Steiner
  • Andreas Pauling
  • Samuel U. Nussbaumer
  • Atle Nesje
  • Jürg Luterbacher
  • Heinz Wanner
  • Heinz J. Zumbühl


A nonlinear backpropagation network (BPN) has been trained with high-resolution multiproxy reconstructions of temperature and precipitation (input data) and glacier length variations of the Alpine Lower Grindelwald Glacier, Switzerland (output data). The model was then forced with two regional climate scenarios of temperature and precipitation derived from a probabilistic approach: The first scenario (“no change”) assumes no changes in temperature and precipitation for the 2000–2050 period compared to the 1970–2000 mean. In the second scenario (“combined forcing”) linear warming rates of 0.036–0.054°C per year and changing precipitation rates between −17% and +8% compared to the 1970–2000 mean have been used for the 2000–2050 period. In the first case the Lower Grindelwald Glacier shows a continuous retreat until the 2020s when it reaches an equilibrium followed by a minor advance. For the second scenario a strong and continuous retreat of approximately −30 m/year since the 1990s has been modelled. By processing the used climate parameters with a sensitivity analysis based on neural networks we investigate the relative importance of different climate configurations for the Lower Grindelwald Glacier during four well-documented historical advance (1590–1610, 1690–1720, 1760–1780, 1810–1820) and retreat periods (1640–1665, 1780–1810, 1860–1880, 1945–1970). It is shown that different combinations of seasonal temperature and precipitation have led to glacier variations. In a similar manner, we establish the significance of precipitation and temperature for the well-known early eighteenth century advance and the twentieth century retreat of Nigardsbreen, a glacier in western Norway. We show that the maritime Nigardsbreen Glacier is more influenced by winter and/or spring precipitation than the Lower Grindelwald Glacier.


Spring Precipitation Precipitation Reconstruction Glacier Mass Balance Equilibrium Line Altitude Glacier Advance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian E (1926) The impulses produced by sensory nerve endings. Part I. J Physiol (Lond) 61:49–72Google Scholar
  2. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe – the state of the art. Clim Change 70:363–430CrossRefGoogle Scholar
  3. Chevallier F, Morcrette JJ, Cheruy F, Scott NA (2000) Use of a neural-network-based long-wave radiative-transfer scheme in the ECMWF atmospheric model. Q J R Meteorol Soc 126(563):761–776CrossRefGoogle Scholar
  4. Chinn T, Winkler S, Salinger MJ, Haakensen N (2005) Recent glacier advances in Norway and New Zealand: a comparison of their glaciological and meteorological causes. Geogr Ann 87A(1):141–157CrossRefGoogle Scholar
  5. Frei C (2004) Die Klimazukunft der Schweiz – Eine probabilistische Projektion. Working paper for the OcCC project “Switzerland in 2050”, OcCC, Bern, 8 ppGoogle Scholar
  6. Govindaraju RS (2000) Artificial neural networks in hydrology. II: hydrologic applications. J Hydrol Eng 5(2):124–137 DOI  10.1061/(ASCE)1084-0699(2000)5:2(124) CrossRefGoogle Scholar
  7. Haeberli W (2006) Integrated perception of glacier changes: a challenge of historical dimensions. In: Knight PG (ed) Glacier science and environmental change. Blackwell, Oxford, pp 423–430CrossRefGoogle Scholar
  8. Haeberli W, Hoelzle M (1995) Application of inventory data for estimating characteristics of and regional climatic-change effects on mountain glaciers: a pilot study with the European Alps. Ann Glaciol 21:206–212Google Scholar
  9. Hoelzle M, Haeberli W, Dischl M, Peschke W (2003) Secular glacier mass balances derived from cumulative glacier length changes. Glob Planet Change 36:295–306CrossRefGoogle Scholar
  10. Holzhauser H, Zumbühl HJ (1996) To the history of the Lower Grindelwald Glacier during the last 2800 years – palaeosols, fossil wood and historical pictorial records–new results. Z Geomorphol, Suppl Bd 104:95–127Google Scholar
  11. Holzhauser H, Zumbühl HJ (1999) Glacier Fluctuations in the Western Swiss and French Alps in the 16th Century. Clim Change 43(1):223–237 DOI  10.1023/A:1005546300948 CrossRefGoogle Scholar
  12. Holzhauser H, Zumbühl HJ (2003) Nacheiszeitliche Gletscherschwankungen. In: Weingartner R, Spreafico M (eds) Hydrologischer Atlas der Schweiz (Tafel 3.8). Bundesamt für Landestopographie, Bern–WabernGoogle Scholar
  13. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, UK, 892 ppGoogle Scholar
  14. Hsieh WW (2004) Nonlinear multivariate and time series analysis by neural network methods. Rev Geophys 42(1):RG1003 DOI  10.1029/2002RG000112 CrossRefGoogle Scholar
  15. Hsieh WW, Tang B (1998) Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull Am Meteorol Soc 79(9):1855–1870CrossRefGoogle Scholar
  16. Imhof M (1998) Rock glaciers, Bernese Alps, western Switzerland. International Permafrost Association, Data and Information Working Group. National Snow and Ice Data Center (NSIDC), University of Colorado, Boulder, Colorado, CD-ROMGoogle Scholar
  17. Kirchhofer W, Sevruk B (1992) Mittlere jährliche korrigierte Niederschlagshöhen 1951–1980. In: Weingartner R, Spreafico M (eds) Hydrologischer Atlas der Schweiz (Tafel 2.2). Bundesamt für Landestopographie, Bern–WabernGoogle Scholar
  18. Klok EJ, Oerlemans J (2004) Modelled climate sensitivity of the mass balance of Morteratschgletscher and its dependence on albedo parametrization. Int J Climatol 24:231–245CrossRefGoogle Scholar
  19. Knutti R, Stocker TF, Joos F, Plattner R (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416:719–723CrossRefGoogle Scholar
  20. Kuhn M (1981) Climate and glaciers. IAHS-AISH Publ 131:3–20Google Scholar
  21. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503 DOI  10.1126/science.1093877 CrossRefGoogle Scholar
  22. Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) The exceptional European warmth of Autumn 2006 and Winter 2007: Historical context, the underlying dynamics and its phenological impacts. Geophys Res Lett 34:L12704CrossRefGoogle Scholar
  23. Matthews JA, Briffa KR (2005) The ‘Little Ice Age’: re-evaluation of an evolving concept. Geogr Ann 87A(1):17–36CrossRefGoogle Scholar
  24. McCarthy J, Canziani OF, Leary NA, Dokken DJ, White KS (eds) (2001) Climate change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge, UKGoogle Scholar
  25. Michaelsen J (1987) Cross-validation in statistical climate forecast Models. J Appl Meteorol 26(11):1589–1600CrossRefGoogle Scholar
  26. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712CrossRefGoogle Scholar
  27. Nesje A, Dahl SO (2003) The ‘Little Ice Age’ – only temperature? Holocene 13(1):139–145CrossRefGoogle Scholar
  28. Nesje A, Lie Ø, Dahl SO (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? J Quat Sci 15:587–601CrossRefGoogle Scholar
  29. Nesje A, Dahl SO, Thun T, Nordli Ø (2008) The ‘Little Ice Age’ glacial expansion in western Scandinavia: summer temperature or winter precipitation? Clim Dyn (in press). DOI  10.1007/s00382-007-0324-z
  30. New ME, Hulme M, Jones PD (2000) Representing twentieth-century space-time climate variability. Part II: Development of 1901–1996 monthly grids of terrestrial surface climate. J Climate 13:2217–2238CrossRefGoogle Scholar
  31. Nussbaumer SU, Zumbühl HJ, Steiner D (2007a) Fluctuations of the “Mer de Glace” (Mont Blanc area, France) AD 1500–2050. Part I: the history of the Mer de Glace AD 1570–2003 according to pictorial and written documents. Z Gletscherkd Glazialgeol 40(2005/2006):5–140Google Scholar
  32. Nussbaumer SU, Zumbühl HJ, Steiner D (2007b) Fluctuations of the “Mer de Glace” (Mont Blanc area, France) AD 1500–2050. Part II: the application of a neural network to the length record of the Mer de Glace. Z Gletscherkd Glazialgeol 40(2005/2006):141–175Google Scholar
  33. Oerlemans J (2001) Glaciers and climate change. Balkema, Rotterdam, 148 ppGoogle Scholar
  34. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677 DOI  10.1126/science.1107046 CrossRefGoogle Scholar
  35. Oerlemans J, Klok EJ (2004) Effect of summer snowfall on glacier mass balance. Ann Glaciol 28:97–100CrossRefGoogle Scholar
  36. Oerlemans J, Reichert BK (2000) Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. J Glaciol 46(152):1–6CrossRefGoogle Scholar
  37. Oerlemans J, Anderson B, Hubbard A, Huybrechts P, Johannesson T, Knap WH, Schmeits M, Stroeven AP, van de Wal RSW, Wallinga J, Zuo Z (1998) Modelling the response of glaciers to climate warming. Clim Dyn 14(4):267–274 DOI  10.1007/s003820050222 CrossRefGoogle Scholar
  38. Østrem G, Liestøl O, Wold B (1976) Glaciological investigations at Nigardsbreen, Norway. Nor Geogr Tidsskr 30(4):187–209CrossRefGoogle Scholar
  39. Østrem G, Dale Selvig K, Tandberg K (1988) Atlas over breer i Sør-Norge (Atlas of glaciers in South Norway). Norges vassdrags- og energiverk, vassdragsdirektoratet. Meddelelse Nr. 61 fra Hydrologisk avdelingGoogle Scholar
  40. Papik K, Molnar B, Schaefer R, Dombovari Z, Tulassay Z, Feher J (1998) Application of neural networks in medicine – a review. Med Sci Monit 4(3):538–546Google Scholar
  41. Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2004) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31:L21402 DOI  10.1029/2004GL020816 CrossRefGoogle Scholar
  42. Pauling A, Luterbacher J, Casty C, Wanner H (2006) 500 years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405 DOI  10.1007/s00382-005-0090-8 CrossRefGoogle Scholar
  43. Rasmussen LA, Andreassen LM, Conway H (2007) Reconstruction of mass balance of glaciers in southern Norway back to 1948. Ann Glaciol 46:255–260CrossRefGoogle Scholar
  44. Reichert BK, Bengtsson L, Oerlemans J (2001) Midlatitude forcing mechanisms for glacier mass balance investigated using general circulation models. J Clim 14(17):3767–3784CrossRefGoogle Scholar
  45. Reusch DB, Alley RB (2004) A 15-year West Antarctic climatology from six automatic-weather-station temperature and pressure records. J Geophys Res 109:D04103 DOI  10.1029/2003JD004178 CrossRefGoogle Scholar
  46. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing: explorations in the microstructure of cognition. vol. 1. MIT, Cambridge, MA, pp 318–362Google Scholar
  47. Sandham W, Leggett M (eds) (2003) Geophysical applications of artificial neural networks and fuzzy logic. Modern approaches in geophysics, vol 21. Kluwer, Boston, 324 ppGoogle Scholar
  48. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefGoogle Scholar
  49. Schmeits MJ, Oerlemans J (1997) Simulation of the historical variations in length of Unterer Grindelwaldgletscher, Switzerland. J Glaciol 43(143):152–164Google Scholar
  50. Schöner W, Böhm R (2007) A statistical mass-balance model for reconstruction of LIA ice mass for glaciers in the European Alps. Ann Glaciol 46:161–169CrossRefGoogle Scholar
  51. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, UK, 996 ppGoogle Scholar
  52. Steiner D (2005) Glacier variations in the Bernese Alps (Switzerland) – reconstructions and simulations. Dissertation, University of Bern, SwitzerlandGoogle Scholar
  53. Steiner D, Walter A, Zumbühl HJ (2005) The application of a non-linear backpropagation neural network to study the mass balance of Grosse Aletschgletscher, Switzerland. J Glaciol 51(173):313–323CrossRefGoogle Scholar
  54. Steiner D, Zumbühl HJ, Bauder A (2008) Two Alpine glaciers over the past two centuries: a scientific view based on pictorial sources. In: Orlove B, Wiegandt E, Luckman BH (eds) Darkening Peaks: Glacier Retreat, Science, and Society. University of California Press, Berkeley, pp 83–99Google Scholar
  55. Stone M (1974) Cross-validation choice and the assessment of statistical predictions. J R Stat Soc B36(1):111–147Google Scholar
  56. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614 DOI  10.1038/nature03089 CrossRefGoogle Scholar
  57. Tagliaferri R, Longo G, D'Argenio B, Incoronato A (2003) Introduction: neural network analysis of complex scientific data: astronomy and geosciences. Neural Netw 16(3–4):295–517CrossRefGoogle Scholar
  58. Vincent C, Le Meur E, Six D, Funk M (2005) Solving the paradox of the end of the Little Ice Age in the Alps. Geophys Res Lett 32(9):L09706 DOI  10.1029/2005GL022552 CrossRefGoogle Scholar
  59. Walter A, Schönwiese CD (2002) Attribution and detection of anthropogenic climate change using a backpropagation neural network. Meteorol Z 11(5):335–343CrossRefGoogle Scholar
  60. Walter A, Schönwiese CD (2003) Nonlinear statistical attribution and detection of anthropogenic climate change using simulated annealing algorithm. Theor Appl Climatol 76:1–12CrossRefGoogle Scholar
  61. Wang W, Jones P, Partridge D (2000) Assessing the impact of input features in a feedforward neural network. Neural Comput Appl 9:101–112CrossRefGoogle Scholar
  62. Wanner H, Rickli R, Salvisberg E, Schmutz C, Schüepp M (1997) Global climate change and variability and its influence on Alpine climate – concepts and observations. Theor Appl Climatol 58:221–243CrossRefGoogle Scholar
  63. Wanner H, Holzhauser H, Pfister C, Zumbühl HJ (2000) Interannual to centennial scale climate variability in the European Alps. Erdkunde 54:62–69CrossRefGoogle Scholar
  64. Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293:451–454CrossRefGoogle Scholar
  65. Wu A, Hsieh WW (2003) Nonlinear interdecadal changes of the El Niño-Southern oscillation. Clim Dyn 21(7–8):719–730 DOI  10.1007/s00382-003-0361-1 CrossRefGoogle Scholar
  66. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32(15):L15713 DOI  10.1029/2005GL023424 CrossRefGoogle Scholar
  67. Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33(13):L13504 DOI  10.1029/2006GL026319 CrossRefGoogle Scholar
  68. Zumbühl HJ (1980) Die Schwankungen der Grindelwaldgletscher in den historischen Bild- und Schriftquellen des 12. bis 19. Jahrhunderts. Denkschriften der Schweizerischen Naturforschenden Gesellschaft 92, 279 ppGoogle Scholar
  69. Zumbühl HJ, Holzhauser H (1988) Alpengletscher in der kleinen Eiszeit. Sonderheft zum 125jährigen Jubiläum des SAC. Die Alpen 64(3):129–322Google Scholar
  70. Zumbühl HJ, Messerli B, Pfister C (1983) Die kleine Eiszeit: Gletschergeschichte im Spiegel der Kunst. Katalog zur Sonderausstellung des Schweizerischen Alpinen Museums Bern und des Gletschergarten-Museums Luzern vom 9.6.–14.8.1983 (Luzern), 24.8.–16.10.1983 (Bern)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Daniel Steiner
    • 1
    • 2
  • Andreas Pauling
    • 5
  • Samuel U. Nussbaumer
    • 1
    • 2
  • Atle Nesje
    • 3
    • 4
  • Jürg Luterbacher
    • 1
    • 2
  • Heinz Wanner
    • 1
    • 2
  • Heinz J. Zumbühl
    • 1
  1. 1.Institute of Geography, Climatology and MeteorologyUniversity of BernBernSwitzerland
  2. 2.Oeschger Centre for Climate Change Research (OCCC) and National Centre of Competence in Research on Climate (NCCR Climate)University of BernBernSwitzerland
  3. 3.Department of Earth ScienceUniversity of BergenBergenNorway
  4. 4.Bjerknes Centre for Climate ResearchBergenNorway
  5. 5.Federal Office of Meteorology and ClimatologyMeteoSwissZürichSwitzerland

Personalised recommendations