Advertisement

Climatic Change

, Volume 88, Issue 3–4, pp 209–249 | Cite as

Sectoral approaches to improve regional carbon budgets

  • Pete Smith
  • Gert-Jan Nabuurs
  • Ivan A. Janssens
  • Stefan Reis
  • Gregg Marland
  • Jean-François Soussana
  • Torben R. Christensen
  • Linda Heath
  • Mike Apps
  • Vlady Alexeyev
  • Jingyun Fang
  • Jean-Pierre Gattuso
  • Juan Pablo Guerschman
  • Yao Huang
  • Esteban Jobbagy
  • Daniel Murdiyarso
  • Jian Ni
  • Antonio Nobre
  • Changhui Peng
  • Adrian Walcroft
  • Shao Qiang Wang
  • Yude Pan
  • Guang Sheng Zhou
Open Access
Article

Abstract

Humans utilise about 40% of the earth’s net primary production (NPP) but the products of this NPP are often managed by different sectors, with timber and forest products managed by the forestry sector and food and fibre products from croplands and grasslands managed by the agricultural sector. Other significant anthropogenic impacts on the global carbon cycle include human utilization of fossil fuels and impacts on less intensively managed systems such as peatlands, wetlands and permafrost. A great deal of knowledge, expertise and data is available within each sector. We describe the contribution of sectoral carbon budgets to our understanding of the global carbon cycle. Whilst many sectors exhibit similarities for carbon budgeting, some key differences arise due to differences in goods and services provided, ecology, management practices used, land-management personnel responsible, policies affecting land management, data types and availability, and the drivers of change. We review the methods and data sources available for assessing sectoral carbon budgets, and describe some of key data limitations and uncertainties for each sector in different regions of the world. We identify the main gaps in our knowledge/data, show that coverage is better for the developed world for most sectors, and suggest how sectoral carbon budgets could be improved in the future. Research priorities include the development of shared protocols through site networks, a move to full carbon accounting within sectors, and the assessment of full greenhouse gas budgets.

Keywords

Soil Organic Carbon Glob Biogeochem Cycle Forest Sector Glob Chang Biol Soil Organic Carbon Sequestration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aber JD, Driscoll CD (1997) Effects of land use, climate variation and N deposition on N cycling and C storage in northern hardwood forests. Glob Biogeochem Cycles 11:639–648Google Scholar
  2. Alexeyev V, Birdsey R, Stakanov V, Korotkov I (1995) Carbon in vegetation of Russian forests - methods to estimate storage and geographical-distribution. Water Air Soil Pollut 82:271–282Google Scholar
  3. Alvarez R (2001) Estimation of carbon losses by cultivation from soils of the Argentine Pampas using the Century model. Soil Use Manage 17:62–66CrossRefGoogle Scholar
  4. Andres RJ, Marland G, Fung I, Matthews E (1996) A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990′. Glob Biogeochem Cycles 10:419–429Google Scholar
  5. Aurela M, Laurila T, Tuovinen JP (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. J Geophys Res Atmos 107:4607Google Scholar
  6. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9:479–492Google Scholar
  7. Balesdent J, Mariotti A, Guillet B (1987) Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biol Biochem 19:25–30Google Scholar
  8. Battaglia M, Sands PJ (1998) Process-based forest productivity models and their applications in forest management. For Ecol Manage 102:13–32Google Scholar
  9. Belyea LR, Baird AJ (2006) Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecol Monogr 76:299–322Google Scholar
  10. Bhatia A, Pathak H, Aggarwal PK (2004) Inventory of methane and nitrous oxide emissions from agricultural soils of India and their global warming potential. Curr Sci 87(3):317–324Google Scholar
  11. Bird SB, Herrick JE, Wander MM, Wright SF (2002) Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environ Pollut 116:445–455Google Scholar
  12. Blasing TJ, Broniak CT, Marland G (2005a) The annual cycle of fossil-fuel carbon dioxide emissions in the United States. Tellus, Ser B Chem Phys Meteorol 57:107–115Google Scholar
  13. Blasing TJ, Broniak C, Marland G (2005b) State-by-state carbon dioxide emissions from fossil-fuel use in the United States 1960–2000. Mitig Adapt Strategies Glob Chang 10:659–674Google Scholar
  14. Bossel H (1996) TREEDYN3 forest simulation model. Ecol Model 90:187–227Google Scholar
  15. Bousquet P, Peylin P, Ciais P, Ramonet M, Monfray P (1999) Inverse modeling of annual atmospheric CO2 sources and sinks 2. Sensitivity study. J Geophys Res Atmos 104(D21):26179–26193Google Scholar
  16. Cannell MGR, Milne R, Hargreaves KJ, Brown TAW, Cruickshank MM, Bradley RI, Spencer T, Hope D, Billett MF, Adger WN, Subak S (1999) National inventories of terrestrial carbon sources and sinks: the UK experience. Clim Change 42:505–530Google Scholar
  17. Cao MK, Marshall S, Gregson K (1996) Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J Geophys Res Atmos 101(D9):14399–14414Google Scholar
  18. CarboEurope-IP (2004) www.carboeurope.org
  19. Chen JM, Liu J, Cihlar J, Goulden ML (1999) Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol Model 124:99–119Google Scholar
  20. Chen WJ, Chen JM, Cihlar J (2000) Integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry. Ecol Model 135:55–79Google Scholar
  21. Chevallier T, Voltz M, Blanchart E, Chotte JL, Eschenbrenner V, Mahieu M, Albrecht A (2000) Spatial and temporal changes of soil C after establishment of a pasture on a long-term cultivated vertisol (Martinique). Geoderma 94:43–58Google Scholar
  22. Christensen TR, Friborg T (eds) (2004) EU peatlands: current carbon stocks and trace gas fluxes. European Commission, CarboEurope-GHG Report 7. Specific Study 4Google Scholar
  23. Christensen TR, Prentice IC, Kaplan J, Haxeltine A, Sitch S (1996) Methane flux from northern wetlands and tundra: an ecosystem source modelling approach. Tellus 48B:651–660Google Scholar
  24. Christensen TR, Johansson T, Malmer N, Åkerman J, Friborg T, Crill P, Mastepanov M, Svensson B (2004) Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys Res Lett 31:L04501,  http://dx.doi.org/10.1029/2003GL018680
  25. Ciais P, Tans PP, Trolier M, White JWC, Francey RJ (1995) A large northern-hemisphere terrestrial CO2 sink indicated by the C-13/C-12 ratio of atmospheric CO2. Science 269:1098–1102Google Scholar
  26. Ciccioli P, Brancaleoni E, Frattoni M, Di Palo V, Valentini R, Tirone G, Seufert G, Bertin N, Hansen U, Csiky O, Lenz R, Sharma M (1999) Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes. J Geophys Res Atmos 104:8077–8094Google Scholar
  27. Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc Lond B 303:605–654Google Scholar
  28. Cole V et al (1996) Agricultural options for mitigation of greenhouse gas emissions. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Climate Change 1995. Impacts, adaptations and mitigation of climate change: scientific-technical analyses. Cambridge University Press, New York, pp 745–771Google Scholar
  29. Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355Google Scholar
  30. Corradi C, Kolle O, Walter K, Zimov SA, Schulze ED (2005) Carbon dioxide and methane exchange of a north-eat Siberian tussock tundra. Glob Chang Biol 11:1910–1925Google Scholar
  31. CTIC (2006) Conservation Technology Information Center. http://www.ctic.purdue.edu/CTIC/BuffersProject/index.html
  32. de Moraes JFL, Volkoff B, Cerri CC, Bernoux M (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma 70:63–81Google Scholar
  33. de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557Google Scholar
  34. Del Galdo I, Six J, Peressotti A, Cotrufo MF (2003) Assessing the impact of land use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob Chang Biol 9:1204–1213Google Scholar
  35. Ewert F, Rounsevell MDA, Reginster I, Metzger M, Leemans R (2005) Future scenarios of European agricultural land use. I: estimating changes in crop productivity. Agric Ecosyst Environ 107:101–116Google Scholar
  36. Fang JY, Chen AP, Peng CH, Zhao SQ, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322Google Scholar
  37. Fang JY, Piao S, Field C, Pan Y, Tang Z, Guo Q, Zhou LM, Peng C, Tao S (2003) Increasing net primary production in China from 1982 to 1999. Front Ecol Environ 1:293–297Google Scholar
  38. Felzer B, Kicklighter DW, Melillo JM, Wang C, Zhuang Q, Prinn R (2004) Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus 56B:230–248Google Scholar
  39. Follett RF (2001) Organic carbon pools in grazing land soils. In: Follett RF, Kimble JM, Lal R (eds) The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. Lewis Publishers, Boca Raton, pp 65–86Google Scholar
  40. Follett RF, Schuman GE (2005) Grazing land contributions to carbon sequestration. In: McGilloway DA (ed) Grassland: a global resource. Wageningen Academic Publishers, The Netherlands, pp 265–277Google Scholar
  41. Franzluebbers AJ, Stuedemann JA, Schomberg HH (2000) Spatial distribution of soil carbon and nitrogen pools under grazed tall fescue. Soil Sci Soc Am J 64:635–639CrossRefGoogle Scholar
  42. Freibauer A, Rounsevell M, Smith P, Verhagen A (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23Google Scholar
  43. Friborg T, Soegaard H, Christensen TR, Lloyd CR, Panikov NS (2003) Siberian wetlands: where a sink is a source. Geophys Res Lett 30(21):2129Google Scholar
  44. Frolking S, Roulet NT, Moore TR, Richard PJH, Lavoie M (2001) Modeling northern peatland decomposition and peat accumulation. Ecosystems 4:479–498Google Scholar
  45. Garcia SC, Holmes CW (2005) Seasonality of calving in pasture-based dairy systems: its effects on herbage production, utilisation and dry matter intake. Aust J Exp Agric 45:1–9Google Scholar
  46. Gluck M, Banko G, Vrzal W (eds) (2000) Harnessing remote sensing to accomplish full carbon accounting: Workshop report, interim Report IR-00–010. International Institute for Applied Systems Analysis, AustriaGoogle Scholar
  47. Goodale C, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S, Nabuurs G-J, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the northern hemisphere. Ecol Appl 12:891–899Google Scholar
  48. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195Google Scholar
  49. Gregg JS (2005) Improving the temporal and spatial resolution of carbon dioxide emissions from fossil-fuel consumption. A thesis submitted to the graduate faculty of the University of North Dakota, August, 2005, 404 pp (data available at http://cdiac.esd.ornl.gov.)
  50. Hadi A, Inubushi K, Razie F, Purnomo E, Yusran FH, Tsuruta H (2000) Dynamics of methane and nitrous oxide in the tropical peatlands. In: Murdiyarso D, Tsuruta H (eds) The impacts of land-use/cover change on greenhouse gas emission in tropical Asia. ICSEA/GCTE/NIES, BogorGoogle Scholar
  51. Hadi A, Inubushi K, Furukawa Y, Purnomo E, Rasmadi M, Tsuruta H (2005) Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia. Nutr Cycl Agroecosyst 71:73–80Google Scholar
  52. Hahn V, Buchmann N (2004) A new model for soil organic carbon turnover using bomb carbon. Glob Biogeochem Cycles 18(1), Art. No. GB1019Google Scholar
  53. Hicke JA, Lobell DB, Asner GP (2004) Cropland area and net primary production computed from 30years of USDA agricultural harvest data. Earth Interact 8:1–20Google Scholar
  54. Huang Y, Zhang W, Zheng XH, Li J, Yu YQ (2004a) Modeling methane emission from rice paddies with various agricultural practices. J Geophys Res 109:D08113Google Scholar
  55. Huang Y, Zhang W, Zheng XH, Wang YS (2004b) Carbon fixation in Chinese croplands from 1950 to 1999 and key factors. In: Proc. on carbon cycling and carbon management in China (in Chinese), Beijing, 12th–14th November 2004. pp 85–86Google Scholar
  56. Husein YA, Murdiyarso D, Khalil MAK, Rasmussen RA, Shearer MJ, Sabiham S, Sunar A, Adijuwana A (1995) Methane flux from Indonesian wetland rice: the effects of water management and rice variety. Chemosphere 31:3153–3180Google Scholar
  57. IPCC (1997) Revised 1996 IPCC guidelines for national greenhouse gas inventories. Meteorological Office, Bracknell, UKGoogle Scholar
  58. IPCC (2000) Special report on land use, land-use change and forestry. Cambridge University Press, CambridgeGoogle Scholar
  59. IPCC (2003) Good practice guidance for land use, land-use change and forestry (GPG-LULUCF). Institute for Global Environmental Strategies (IGES) for the IPCC, Kanagawa, JapanGoogle Scholar
  60. Isaev A, Korovin G, Zamolodchikov D, Utkin A, Pryaznikov A (1995) Carbon stock and deposition in phytomass of the Russian forests. Water Air Soil Pollut 82:247–256Google Scholar
  61. Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs G-J, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze E-D, Valentini R, Dolman H (2003) Carbon sinks and sources in the European terrestrial biosphere. Science 300:1538–1542Google Scholar
  62. Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, Heimann M, Nabuurs G-J, Smith P, Valentini R, Schulze ED (2005) The carbon budget of terrestrial ecosystems at country-scale. A European case study. Biogeosciences 2:15–27Google Scholar
  63. Jenkinson DS (1988) Soil organic matter and its dynamics. In: Wild A (ed) Russell’s soil conditions and plant growth. 11th edn. Longman, London, pp 564–607Google Scholar
  64. Jenkinson DS, Coleman K (1994) Calculating the annual input of organic-matter to soil from measurements of total organic-carbon and radiocarbon. Eur J Soil Sci 45:167–174Google Scholar
  65. Jones RJA, Hiederer R, Rusco E, Loveland PJ, Montanarella L (2003) Topsoil organic carbon in Europe. In: Proc. 4th European Congress on Regional Geoscientific Cartography and Information Systems, Bologna, 17th –20th June 2003. pp 249–251Google Scholar
  66. Jones RJA, Hiederer R, Rusco E, Loveland PJ, Montanarella L (2004) The map of organic carbon in topsoils in Europe, Version 1.2 September 2003: explanation of Special Publication Ispra 2004 No.72 (S.P.I.04.72). European Soil Bureau Research Report No.17, EUR 21209 EN. Office for Official Publications of the European Communities, Luxembourg, 26pp. and 1 map in ISO B1 formatGoogle Scholar
  67. Karjalainen T, Pussinen A, Liski J, Nabuurs GJ, Eggers T, Lapvetelainen T, Kaipainen T (2003) Scenario analyses of the impacts of forest management and climate change on the European forest sector carbon budget. Forest Policy and Economics 5:141–155Google Scholar
  68. Kauppi P, Kari M, Kuusela K (1992) Biomass and carbon budget of European forests, 1971 to 1990. Science 256:70–79Google Scholar
  69. Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre A, Kabat P, Andreae MO (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Glob Biogeochem Cycles 16:1126Google Scholar
  70. Kheshgi HS, Prince RC, Marland G (2000) The potential of biomass fuels in the context of global climate change: focus on transportation fuels. Annu Rev Energy Environ 25:199–244Google Scholar
  71. Kimmins JP, Mailly D, Seely B (1999) Modelling forest ecosystem net primary production: the hybrid simulation approach used in FORECAST. Ecol Model 122:195–224Google Scholar
  72. Kruijt B, Elbers JA, von Randow C, Araujo AC, Oliveira PJ, Culf A, Manzi AO, Nobre AD, Kabat P, Moors EJ (2004) The robustness of eddy correlation fluxes for Amazon rain forest conditions. Ecol Appl 14:S101–S113Google Scholar
  73. Kurz WA, Apps MJ (1999) A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–547Google Scholar
  74. Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob Biogeochem Cycles 17:1036Google Scholar
  75. Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22Google Scholar
  76. Landsberg JJ (1986) Physiological ecology of forest production. Academic Press, Sydney, AustraliaGoogle Scholar
  77. Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation–use efficiency, carbon balance and partitioning. For Ecol Manage 95:209–228Google Scholar
  78. Lappalainen E (ed) (1996) Global peat resources. International Peat Society and Geological Survey of Finland, pp 57–162Google Scholar
  79. Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions offsetting reductions in climate radiative forcing. Clim Change 72:321–338Google Scholar
  80. Liu JX, Peng CH, Apps MJ, Dang QL, Banfield E, Kurz W (2002) Historic carbon budget of Ontario’s forest ecosystems. For Ecol Manag 169:103–114Google Scholar
  81. Lobell DB, Hicke JA, Asner GP, Field CB, Tucker CJ, Los SO (2002) Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–98. Glob Chang Biol 8:722–735Google Scholar
  82. Lobell DB, Asner GP, Ortiz-Monasterio JI, Benning TL (2003) Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties. Agric Ecosyst Environ 94:205–220Google Scholar
  83. Losey LM (2004) Monthly and seasonal estimates of carbon dioxide emissions fro fossil fuel consumption in Canada, Mexico, The United Kingdon, France, Spain, Italy, and Poland. A thesis submitted to the graduate faculty of the University of North Dakota, May, 2004, 328 pp (data available at http://cdiac.esd.ornl.gov.)
  84. Luoto M, Heikkinen R, Carter T (2004) Loss of palsa mires in Europe and biological consequences. Environ Conserv 31(1):30–37Google Scholar
  85. Mackenzie FT, Lerman A, Andersson AJ (2004) Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1:11–32CrossRefGoogle Scholar
  86. Malmer N, Johansson T, Olsrud M, Christensen TR (2005) Vegetation, climatic changes and net carbon sequestration. Glob Chang Biol 11:1895–1909Google Scholar
  87. Maltby E, Immirizi CP (1993) Carbon dynamics in peatlands and other wetlands soils: regional and global perspective. Chemosphere 27:999–1023Google Scholar
  88. Marland G, Brenkert A, Olivier J (1999) CO2 from fossil fuel burning: a comparison of ORNL and EDGAR estimates of national emissions. Environ Sci Policy 2:265–273Google Scholar
  89. Martin P (1998) Estimating the CO2 uptake in Europe. Science 281:1806–1806Google Scholar
  90. McConkey BG, Brierley JA, VandenBygaart A, Huffman T, Martin T, Bentham M, Desjardins RL, Monreal CM, Patterson CT, Rochette P, Liang BC, Smith WN, de Grooijer H, Gameda S, Boehm M (2008) Estimating carbon change for Canada with the National Carbon and Greenhouse-Gas emission Accounting and Verification System for agriculture (NCGAVS). Can J Soil Sci, (in press)Google Scholar
  91. McGuire AD, Melillo JM, Kicklighter DW, Pan Y, Xiao X, Helfrich J, Moore B III, Vorosmarty CJ, Schloss AL (1997) Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration. Glob Biogeochem Cycles 11:173–189Google Scholar
  92. Medlyn BE, McMurtrie RE, Dewar RC, Jeffreys MP (2000) Soil processes dominate the long-term response of forest net primary productivity to increased temperature and atmospheric CO2 concentration. Can J For Res 30:873–888Google Scholar
  93. Meybeck M, Vörösmarty C (2005) Fluvial filtering of land-to-ocean fluxes: from natural Holocene variations to Anthropocene. Comptes Rendus Geoscience 337:107–123Google Scholar
  94. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Working Paper 55, Tyndall Centre for Climate Change Research, University of East Anglia, NorwichGoogle Scholar
  95. Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabaté S, Sánchez A, Pla E, Gracia CA, Sitch S, Arneth A, Ogee J (2005) Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob Chang Biol 11:2211–2233Google Scholar
  96. Murdiyarso D, Adiningsih ES (2008) Climatic variability, Indonesian vegetation fires and terrestrial carbon emissions. J Mitigation and Adaptation Strategies for Global Change, (in press)Google Scholar
  97. Nabuurs GJ, Paivinen R, Sikkema R, Mohren GMJ (1997) The role of European forests in the global carbon cycle - A review. Biomass Bioenergy 13(6):345–358Google Scholar
  98. Nabuurs GJ, Pussinen A, Karjalainen T, Ehrhard M, Kramer K (2002) Stemwood volume increment changes in European forests due to climate change; a simulation study with the EFISCEN model. Glob Chang Biol 8:304–316Google Scholar
  99. NCAS (2002) Greenhouse gas emissions from land use change in Australia: an integrated application of the National Carbon Accounting System. Australian Greenhouse Office, Canberra, ACT, p 124Google Scholar
  100. Neuzil SG (1997) Onset and rate of peat and carbon accumulation in four domed ombrogenous peat deposits in Indonesia. In: Rieley JO, Page SE (eds) Biodiversity and sustainability of tropical peatlands. Samara Publishing Ltd, Cardigan, pp 55–72Google Scholar
  101. Ni J (2002) Carbon storage in grasslands of China. J Arid Environ 50:205–218Google Scholar
  102. Ni J (2004a) Estimating grassland net primary productivity from field biomass measurements in temperate northern China. Plant Ecol 174:217–234Google Scholar
  103. Ni J (2004b) Forage yield-based carbon storage in grasslands of China. Clim Change 67:237–246Google Scholar
  104. Nishimura S, Sawamoto T, Akiyama H, Sudo S, Yagi K (2004) Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Glob Biogeochem Cycles 18:GB2017Google Scholar
  105. Nobre AD, Harriss RC (2002) Saving the rainforest with sustainable enterprises in degraded lands: the Amazonian phoenix project. In: Proceeding of Working Forests in the Tropics Conference, Gainesville, Fl, USA, February, 2002Google Scholar
  106. Nordstroem C, Soegaard H, Christensen TR, Friborg T, Hansen BU (2001) Seasonal carbon dioxide balance and respiration of a high- arctic fen ecosystem in NE-Greenland. Theor Appl Climatol 70:149–166Google Scholar
  107. Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–981Google Scholar
  108. Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72:87–121Google Scholar
  109. Olivier JGJ, Berdowski JJM (2001) Global emissions sources and sinks. In: Berdowski J, Guicherit R, Heij BJ (eds) The climate system. A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands, pp 33–78Google Scholar
  110. Ollinger SV, Aber JD, Reich PB, Freuder RJ (2002) Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 land use history on the carbon dynamics of northern hardwood forests. Glob Chang Biol 8:545–562Google Scholar
  111. Page SE, Siegert F, Rieley JO, Boehm HD, Jaya A (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65Google Scholar
  112. Païvinen R, Anttila P (2001) How reliable is a satellite forest inventory? Silva Fenn 35:125–127Google Scholar
  113. Pan Y, Hom J, Birdsey R, McCullough K (2004) Impacts of rising nitrogen deposition on N exports from forests to surface waters in the Chesapeake Bay watershed. Environmental Management 33(4):s120–s131Google Scholar
  114. Pan Y, Hom J, Birdsey R, McCullough K (2008) Multiple stressors and carbon dynamics in Atlantic temperate forests. Ecosystems (in press)Google Scholar
  115. Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Chang Biol 9:525–535Google Scholar
  116. Parton WJ, Scurlock JM, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut J-C, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario JI (1993) Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob Biogeochem Cycles 7:785–809CrossRefGoogle Scholar
  117. Parton WJ, Gutmann MP, Williams SA, Easter M, Ojima D (2005) Ecological impact of historical land-use patterns in the great plains: a methodological assessment. Ecol Appl 15:1915–1928Google Scholar
  118. Pastor J, Post WM (1988) Response of northern forests to CO2–induced climate change. Nature 334:55–58Google Scholar
  119. Paustian K, Cole CV, Sauerbeck D, Sampson N (1998) CO2 mitigation by agriculture: an overview. Clim Change 40:135–162Google Scholar
  120. Peng CH (2000) Understanding the role of forest simulation models in sustainable forest management. Environ Impact Assess Rev 20:481–501Google Scholar
  121. Peng CH, Liu JX, Dang QL, Apps MJ, Jiang H (2002) TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecol Model 153:109–130Google Scholar
  122. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nunez PV, Vasquez RM, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence from long term plots. Science 282:439–442Google Scholar
  123. Piao SL, Fang JY, Zhou L, Tan K (2007) Changes in biomass carbon stocks in China’s grasslands between 1982 to 1999. Glob Biogeochem Cycles 22, Art. No. GB2002 APR 11 2007Google Scholar
  124. Potter C, Klooster S, Nemani R, Genovese V, Hiatt S, Fladeland M, Gross P (2006) Estimating carbon budgets for U.S. ecosystems. Eos Trans AGU 87(8):85Google Scholar
  125. Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cycles 13:997–1027Google Scholar
  126. Rangel-Castro JI, Prosser JI, Scrimgeour CM, Smith P, Ostle N, Ineson P, Meharg AA, Killham K (2004) Carbon flow in an upland grassland: effect of liming on the flux of recently photosynthesised carbon to rhizosphere soil. Glob Chang Biol 10:2100–2108.Google Scholar
  127. Roberts DA, Keller M, Soares JV (2003) Studies of land-cover, land-use, and biophysical properties of vegetation in the large scale biosphere atmosphere experiment in Amazônia. Remote Sens Environ 87:377–388Google Scholar
  128. Robertson GP (2004) Abatement of nitrous oxide, methane and other non-CO2 greenhouse gases: the need for a systems approach. In: Field CB, Raupach MR (eds) The global carbon cycle. Integrating humans, climate, and the natural world, Scope 62. Island Press, Washington DC, pp 493–506Google Scholar
  129. Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925Google Scholar
  130. Robles MD, Burke IC (1998) Soil organic matter recovery on conservation reserve program fields in southeastern Wyoming. Soil Sci Soc Am J 62:725–730CrossRefGoogle Scholar
  131. Rojstaczer S, Sterling SM, Moore NJ (2001) Human appropriation of photosynthesis products. Science 294:2549–2552Google Scholar
  132. Roulet NT (2000) Peatlands, carbon storage, greenhouse gases and the Kyoto Protocol: prospects and significance for Canada. Wetlands 20:605–615Google Scholar
  133. Rounsevell MDA, Ewert F, Reginster I, Leemans R, Carter TR (2005) Future scenarios of European agricultural land use. II: estimating changes in land use and regional allocation. Agric Ecosyst Environ 107:117–135Google Scholar
  134. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. BioScience 54:547–560Google Scholar
  135. Saggar S, Andrew RM, Tate KR, Hedley CB, Rodda NJ, Townsend JA (2004) Modelling nitrous oxide emissions from dairy-grazed pastures. Nutr Cycl Agroecosyst 68:243–255Google Scholar
  136. Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557Google Scholar
  137. Schlamadinger B, Marland G (1999) Net effect of forest harvest on CO2 emissions to the atmosphere: a sensitivity analysis on the influence of time. Tellus, Ser B Chem Phys Meteorol 51:314–325Google Scholar
  138. Schlünz B, Schneider RR (2000) Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates. Int J Earth Sci 88:599–606Google Scholar
  139. Schroeder P, Winjum J (1995) Assessing Brazil’s carbon budget: I. Biotic carbon pools. For Ecol Manag 75:77–86Google Scholar
  140. Sheeder SA, Lynch JA, Crimm J (2002) Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed. J Environ Qual 31:1194–1206CrossRefGoogle Scholar
  141. Shvidenko A, Venevsky S, Raile G, Nilsson S (1995) A system for evaluation of growth and mortality in Russian forests. Water Air Soil Pollut 82:333–348Google Scholar
  142. Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Chang Biol 12:2054–2076Google Scholar
  143. Six J, Carpentier A, van Kessel C, Merckx R, Harris D, Horwath WR, Luscher A (2001) Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant Soil 234:27–36Google Scholar
  144. Six J, Ogle SM, Breidt FJ, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Glob Chang Biol 10:155–160Google Scholar
  145. Smith P (2004a) CarboEurope GHG: greenhouse gas emissions from European croplands. CarboEurope GHG, University of Tuscia, Viterbo, ItalyGoogle Scholar
  146. Smith P (2004b) Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20:229–236Google Scholar
  147. Smith P (2004c) Soils as carbon sinks - the global context. Soil Use Manage 20:212–218Google Scholar
  148. Smith P (2005) The permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. Eur J Soil Sci 56:673–680Google Scholar
  149. Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov A, Li C, Molina JAE, Mueller T, Parton WJ, Thornley JHM, Whitmore AP (1997a) A comparison of the performance of nine soil organic matter models using seven long-term experimental datasets. Geoderma 81:153–225Google Scholar
  150. Smith P, Powlson DS, Glendining MJ, Smith JU (1997b) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob Chang Biol 3:67–79Google Scholar
  151. Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Glob Chang Biol 4:679–685Google Scholar
  152. Smith P, Powlson DS, Smith JU, Falloon PD, Coleman K (2000) Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Glob Chang Biol 6:525–539Google Scholar
  153. Smith P, Falloon P, Smith JU, Powlson DS (eds) (2001a) Soil organic matter network (SOMNET): 2001 Model and Experimental Metadata. GCTE Report 7, 2nd edn. GCTE Focus 3 Office, Wallingford, Oxon, 224ppGoogle Scholar
  154. Smith P, Goulding KW, Smith KA, Powlson DS, Smith JU, Falloon PD, Coleman K (2001b) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosyst 60:237–252Google Scholar
  155. Smith JU, Smith P, Monaghan R, Macdonald RJ (2002a) When is a measured soil organic matter fraction equivalent to a model pool? Eur J Soil Sci 53:405–416Google Scholar
  156. Smith P, Falloon PD, Körschens M, Shevtsova LK, Franko U, Romanenkov V, Coleman K, Rodionova V, Smith JU, Schramm G (2002b) EuroSOMNET - a European database of long-term experiments on soil organic matter: the WWW metadatabase. Journal of Agricultural Science Cambridge 138:123–134Google Scholar
  157. Smith JU, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell M, Reginster I, Ewert F (2005) Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob Chang Biol 11:2141–2152Google Scholar
  158. Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith JU (2007a) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond, B 363, http://dx.doi.org/10.1098/rstb.2007.2184
  159. Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S (2007b) Influence of climate and non-climate policy on implementation of agricultural greenhouse gas mitigation options. Agric Ecosyst Environ 118:6–28Google Scholar
  160. Sorensen KW (1993) Indonesian peat swamp forests and their role as a carbon sink. Chemosphere 27:1065–1082Google Scholar
  161. Soussana JF, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manage 20:219–230Google Scholar
  162. Strengers B, Leemans R, Eickhout B, ve Vries B, Bouwman L (2004) The land-use projections and resulting emissions in the IPCC SRES scenarios as simulated by the IMAGE 2.2 model. GeoJournal 61:381–393Google Scholar
  163. Suratno W, Murdiyarso D, Suratmo FG, Anas I, Saeni MS, Rambe A (1998) Nitrous oxide emission from irrigated rice fields in West Java. J Environ Pollution 102:159–166Google Scholar
  164. Tacconi L (2003) Fires in Indonesia: causes, costs and policy implications. CIFOR Occasional Paper No. 38Google Scholar
  165. Tate KR, Scott NA, Parshotam A, Brown L, Wilde RH, Giltrap DJ, Trustrum NA, Gomez B, Ross DJ (2000) A multi-scale analysis of a terrestrial carbon budget - is New Zealand a source or sink of carbon? Agric Ecosys Env 82:229–246Google Scholar
  166. Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251Google Scholar
  167. Turner DP, Koerper GJ, Harmon ME, Lee JJ (1995) A carbon budget for forests of the conterminous United States. Ecol Appl 5:421–436Google Scholar
  168. Turunen J, Tahvanainen T, Tolonen K, Pitkanen A (2001) Carbon accumulation in West Siberian mires, Russia. Glob Biogeochem Cycles 15:285–296Google Scholar
  169. UN-ECE/FAO (2000) Forest products annual market review 1999–2000. http://www.unece.org/trade/timber/docs/rev-00/rev00.htm
  170. Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Guomundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865Google Scholar
  171. Vitousek P, Ehrlich P, Ehrlich A, Matson P (1986) Human appropriation of the products of photosynthesis. BioScience 36:368–373Google Scholar
  172. Vleeshouwers LM, Verhagen A (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe. Glob Chang Biol 8:519–530Google Scholar
  173. Vuichard N, Viovy N, Ciais P, Soussana JF, Calanca P (2004) Greenhouse gases sources and sinks over European grasslands: first calculations using a process-driven model. Invited oral presentation at the First General Assembly of European Geosciences Union, Nice (France), 29 April 2004Google Scholar
  174. Walter BP, Heimann M, Matthews E (2001) Modeling modern methane emissions from natural wetlands 1. Model description and results. J Geophys Res 106(D24):34189–34206Google Scholar
  175. Weishampel JF, Blair JB, Knox RG, Dubayah R, Clark DB (2000) Volumetric lidar return patterns from an old-growth tropical rainforest canopy. Int J Remote Sens 21:409–415Google Scholar
  176. West TO, Marland G (2002) A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric Ecosyst Environ 91:217–232Google Scholar
  177. West TO, Marland G (2003) Net carbon flux from agriculture: carbon emissions, carbon sequestration, crop yield, and land-use change. Biogeochemistry 63:73–83Google Scholar
  178. West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agriculture Ecosystems and Environment 108:145–154Google Scholar
  179. Williams M, Shimabukuro YE, Herbert DA, Lacruz SP, Renno C, Rastetter EB (2002) Heterogeneity of soils and vegetation in an eastern Amazonian rain forest: implications for scaling up biomass and production. Ecosystems 5:692–704Google Scholar
  180. Yan X, Cai Z, Ohara T, Akimoto H (2003) Methane emission from rice fields in mainland China: amount and seasonal and spatial distribution. J Geophys Res 108(D16):4505Google Scholar
  181. Zheng X, Han S, Huang Y, Wang Y, Wang M (2004) Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Glob Biogeochem Cycles 18:GB2018Google Scholar
  182. Zhou GS, Wang YH, Jiang YL, Yang ZY (2002) Estimating biomass and net primary production from forest inventory data: a case study of China’s Larix forests. For Ecol Manag 169:149–157Google Scholar
  183. Zhou X, Peng CH, Dang Q, Chen J, Parton S (2008) A simulation of temporal and spatial variations in carbon at landscape level: a case study for Lake Abitibi Model Forest in Ontario, Canada. Mitig Adapt Strategies Glob Chang (in press)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Pete Smith
    • 1
  • Gert-Jan Nabuurs
    • 2
  • Ivan A. Janssens
    • 3
  • Stefan Reis
    • 4
  • Gregg Marland
    • 5
    • 6
  • Jean-François Soussana
    • 7
  • Torben R. Christensen
    • 8
  • Linda Heath
    • 9
  • Mike Apps
    • 10
  • Vlady Alexeyev
    • 11
  • Jingyun Fang
    • 12
  • Jean-Pierre Gattuso
    • 13
  • Juan Pablo Guerschman
    • 14
  • Yao Huang
    • 15
  • Esteban Jobbagy
    • 16
  • Daniel Murdiyarso
    • 17
  • Jian Ni
    • 18
    • 25
  • Antonio Nobre
    • 19
  • Changhui Peng
    • 20
  • Adrian Walcroft
    • 21
  • Shao Qiang Wang
    • 22
  • Yude Pan
    • 23
  • Guang Sheng Zhou
    • 24
  1. 1.School of Biological SciencesUniversity of AberdeenAberdeenUK
  2. 2.ALTERRAWageningen University & Research CentreWageningenThe Netherlands
  3. 3.Department of BiologyUniversity of AntwerpAntwerpBelgium
  4. 4.CEH, Centre for Ecology and Hydrology EdinburghMidlothianUK
  5. 5.Environmental Sci. Div.Oak Ridge National LabOak RidgeUSA
  6. 6.Ecotechnology ProgramMid Sweden UniversityÖstersundSweden
  7. 7.Agronomy UnitINRAClermont FerrandFrance
  8. 8.GeoBiosphere Sci Ctr, Phys Geog and Ecosyst AnalLund UniversityLundSweden
  9. 9.US Forest ServUSDADurhamUSA
  10. 10.Canadian Forest ServicePacific Forestry CentreVictoriaCanada
  11. 11.Russian Acad SciVn Sukachev Inst Forests ResNovosibirskRussia
  12. 12.Coll Environm Sci, Department EcolPeking UniversityBeijingPeople’s Republic of China
  13. 13.Observatoire OcéanologiqueLaboratoire d’Océanographie, CNRS-UPMCVillefranche-sur-mer CedexFrance
  14. 14.CSIRO Land and WaterCanberraAustralia
  15. 15.Inst Atmospher PhysChinese Acad SciBeijingPeople’s Republic of China
  16. 16.Grupo de Estudios AmbientalesUniversidad Nacional del San Luis & CONICETSan LuisArgentina
  17. 17.CIFORJakartaIndonesia
  18. 18.Chinese Acad Sci, Inst BotLab Quantitat Vegetat EcolBeijingPeople’s Republic of China
  19. 19.Inst Nacl Pesquisas da AmazôniaEscritório Regional no INPESao Jose dos CamposBrazil
  20. 20.Institute of Environment SciencesUniversity of Quebec at Montreal Case postale 8888MontrealCanada
  21. 21.Landcare ResearchPalmerston NorthNew Zealand
  22. 22.Chinese Acad SciInst Geog Sci and Nat Resources ResBeijingPeople’s Republic of China
  23. 23.USDA Forest ServiceGlobal Change ProgramNewtown SquareUSA
  24. 24.Inst Bot, Lab Quantitat Vegetat EcolChinese Acad SciBeijingPeople’s Republic of China
  25. 25.Max Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations