Climatic Change

, Volume 87, Issue 3–4, pp 471–487 | Cite as

A new method to reconstruct low-frequency climatic variability from documentary sources: application to winter rainfall series in Andalusia (Southern Spain) from 1501 to 2000

  • F. S. RodrigoEmail author


In this work a simple approach to reconstruct climatic variables from documentary data is proposed. This approach may be especially useful when an overlapping period between documentary and instrumental data is not available. On the other hand, the method avoids use artificial statistical procedures to rescale the reconstructed series and overcome the problem of the loss of variance. The methodology allows reconstruct changes in the mean value and standard deviation of the climate variables. It is based on accounting the number of extreme events in past, and inferring mean value and standard deviation using the assumption of normal distribution for the climatic variables. The application of the method is only possible if a sufficient number of events is recorded in the data base. It is useful to reconstruct changes in the long-time scale, using at least decadal periods as time units. The method is applied to winter rainfall series corresponding to 30-year periods in Andalusia (southern Spain), obtaining results comparable with those of previous analysis.


North Atlantic Oscillation Reference Period Instrumental Data Documentary Source North Atlantic Oscillation Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almarza C, López JA, Flores C (1996) Homogeneidad y variabilidad de los registros históricos de precipitación en España. Instituto Nacional de Meteorología, Madrid, p 318Google Scholar
  2. Barriendos M (1997) Climate variations in the Iberian Peninsula during the late Maunder Minimum (a.d. 1675–1715): an analysis of data from rogation ceremonies. Holocene 7:105–111CrossRefGoogle Scholar
  3. Barriendos M, Llasat MC (2003) The case of the ‘Maldá’ anomaly in the western Mediterranean basin (a.d. 1760–1800): an example of a strong climatic variability. Clim Change 61:191–216CrossRefGoogle Scholar
  4. Barriendos M, Martín-Vide J (1998) Secular climatic oscillations as indicated by catastrophic floods in the Spanish Mediterranean coastal area (14th–19th centuries). Clim Change 38:473–491CrossRefGoogle Scholar
  5. Benito G, Díez-Herrero A, Fernández de Villalta M (2003) Magnitude and Frequency of Flooding in the Tagus Basin (Central Spain) over the Last Millenium. Clim Change 58:171–192CrossRefGoogle Scholar
  6. Benito G, Díez-Herrero A, Fernández de Villalta M (2004) Flood response to solar activity in the Tagus basin (central Spain) over the last millennium. Clim Change 66:27–28CrossRefGoogle Scholar
  7. Bentabol H (1900) Las aguas de España y Portugal. 2nd ed. Vda. E Hijos de M. Tello, Madrid, Spain, p 325Google Scholar
  8. Brázdil R, Glaser R, Pfister C et al (1999) Flood events of selected European rivers in the sixteenth century. Clim Change 43:239–285CrossRefGoogle Scholar
  9. Brázdil R, Pfister C, Wanner H et al (2005) Historical Climatology in Europe – the state of the art. Clim Change 70:363–430CrossRefGoogle Scholar
  10. Briffa KR, Osborn TJ, Schweingruber FH et al (2002) Tree-ring width and density data around the northern hemisphere: part I, local and regional climate signals. Holocene 12:737–757CrossRefGoogle Scholar
  11. Camuffo D, Enzi S (1992) Reconstructing the climate of Northern Italy from archive sources. In: Bradley RS, Jones PD (eds) Climate since a.d. 1500. Routledge, London, pp 143–154Google Scholar
  12. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  13. Font Tullot I (1988) Historia del clima de España. Cambios climáticos y sus causas. Instituto Nacional de Meteorología, Madrid, p 297Google Scholar
  14. Frei C, Schär C (2000) Detection probability of trends in rare events: theory and application to heavy precipitation in the Alpine region. J Climate 14:1568–1584CrossRefGoogle Scholar
  15. García de Pedraza L, García Vega C (1989) La sequía y el clima de España. Calendario Meteorológico 1989. Instituto Nacional de Meteorología, Madrid, pp 188–198Google Scholar
  16. Glaser R (2001) Klimageschichte Mittleeuropas. Primus Verlag, Darmstad, p 227Google Scholar
  17. Horton EB, Parker DE, Folland CK et al (2001) The effect of increasing the mean on the percentage of extreme values in Gaussian and skew distributions. Clim Change 50:509–510CrossRefGoogle Scholar
  18. Jones PD, Briffa KR (2006) Unusual climate in Northwest Europe during the period 1730 to 1745 based on instrumental and documentary data. Clim Change 79:361–379CrossRefGoogle Scholar
  19. Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302CrossRefGoogle Scholar
  20. Le Roy Ladurie E (2004) Histoire humaine et comparée du climat. Canicules et Glaciers XIIIe–XVIIIe siècles. Fayard, Paris, p 740Google Scholar
  21. Lettenmaier D (1995) Stochastic modeling of precipitation with applications to climate model downscaling. In: von Storch H, Navarra A (eds) Analysis of climate variability. Springer, Berlin, pp 197–212Google Scholar
  22. Luterbacher J, Schmutz C, Gyalistras D et al (1999) Reconstruction of monthly NAO and EU indices back to a.d. 1675. Geophys Res Lett 26:2745–2748CrossRefGoogle Scholar
  23. Luterbacher J, Rickli R, Xoplaki E et al (2001) The Late Maunder Minimum (1675–1715) – a key period for studying decadal scale climatic change in Europe. Clim Change 49:441–462CrossRefGoogle Scholar
  24. Luterbacher J, Xoplaki E, Dietrich D et al (2002a) Extending North Atlantic Oscillation reconstructions back to 1500. Atmos Sci Lett 2:114–124CrossRefGoogle Scholar
  25. Luterbacher J, Xoplaki E, Dietrich D et al (2002b) Reconstruction of sea-level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dynam 18:545–561Google Scholar
  26. Luterbacher J, Dietrich D, Xoplaki E et al (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499CrossRefGoogle Scholar
  27. Luterbacher J, Xoplaki E, Casty C et al (2006) Mediterranean climate variability over the last centuries: a review. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) The Mediterranean Climate: an overview of the main characteristics and issues. Elsevier, Amsterdam, pp 27–148Google Scholar
  28. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  29. Martín-Vide J, Barriendos M (1995) The use of rogations ceremony records in climatic reconstruction: a case study from Catalonia (Spain). Clim Change 30:201–221CrossRefGoogle Scholar
  30. Mearns LO, Katz RW, Schneider SH (1984) Extreme high-temperature events: changes in their probabilities with changes in mean temperature. J Clim Appl Meteorol 23:1601–1613CrossRefGoogle Scholar
  31. Meehl GA, Karl T, Easterling DR et al (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Met Soc 81:413–416CrossRefGoogle Scholar
  32. Muñoz-Díaz D, Rodrigo FS (2004) Impacts of the North Atlantic Oscillation on the probability of dry and wet winters in Spain. Clim Res 27:33–43CrossRefGoogle Scholar
  33. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405CrossRefGoogle Scholar
  34. Pfister C (1992) Monthly temperature and precipitation patterns in Central Europe from 1525 to the present. In: Bradley RS, Jones PD (eds) A methodology for quantifying man-made evidence on weather and climate. Routledge, Kondon and New York, pp 118–142Google Scholar
  35. Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995. Haupt, Bern, p 304Google Scholar
  36. Pfister C, Brázdil R (1999) Climatic variability in sixteenth century Europe and its social dimension: a synthesis. Clim Change 43:5–53CrossRefGoogle Scholar
  37. Pfister C, Wiengartner R, Luterbacher J (2006) Hydrological winter droughts over the last 450 years in the Upper Rhine basin: a methodological approach. Hydrological Sciences-Journal-des Sciences Hydrologiques 51:966–985CrossRefGoogle Scholar
  38. Pichard G (1999) Espace et nature en Provence du XVI au XVIII siècle. Université d’ Aix-Marseille I, Aix-en-ProvenceGoogle Scholar
  39. Rico Sinobas M (c 1850) Archive of Royal Academy of Medicine of Madrid, ‘Fenómenos meteorológicos en la Península Ibérica desde el siglo IV hasta el XIX’, Section Manuscripts, ref. 23-4-15Google Scholar
  40. Rico Sinobas M (1851) Memoria sobre las causas meteorológico-físicas que producen las constantes sequías de Murcia y Almería. Ministerio de Comercio, MadridGoogle Scholar
  41. Rodrigo FS (2002) Changes in climate variability and seasonal rainfall extremes: a case study from San Fernando (Spain), 1821–2000. Theor Appl Climatol 72:193–207CrossRefGoogle Scholar
  42. Rodrigo FS, Esteba-Parra MJ, Castro-Díez Y (1994) An attempt to reconstruct the rainfall regime of Andalusia (southern Spain) from 1601 a.d. to 1650 a.d. using historical documents. Clim Change 27:397–418CrossRefGoogle Scholar
  43. Rodrigo FS, Esteban-Parra MJ, Castro-Díez Y (1998) On the use of the Jesuit Order private correspondence records in climate reconstructions: a case study from Castille (Spain) for 1634–1648 a.d. Clim Change 40:625–645CrossRefGoogle Scholar
  44. Rodrigo FS, Esteban-Parra MJ, Pozo-Vázquez D et al (1999) A 500-year precipitation record in southern Spain. Int J Climatol 19:1233–1253CrossRefGoogle Scholar
  45. Rodrigo FS, Esteban-Parra MJ, Pozo-Vázquez D et al (2000) Rainfall variability in southern Spain on decadal to centennial time scales. Int J Climatol 20:721–732CrossRefGoogle Scholar
  46. Rodrigo FS, Pozo-Vázquez D, Esteban-Parra MJ et al (2001) A reconstruction of the winter North Atlantic Oscillation index back to a.d. 1501 using documentary data in southern Spain. J Geophys Res 106:14805–14818CrossRefGoogle Scholar
  47. Rutherford S, Mann ME, Osborn TJ et al (2005) Proxy-based Northern Hemisphere surface temperature reconstructions: sensitivity to method, predictor network, target season, and target domain. J Clim 18:2308–2329CrossRefGoogle Scholar
  48. Solow AR (1999) On testing for change in extreme events. Clim Change 42:341–349CrossRefGoogle Scholar
  49. Vaquero JM (2004) Solar signal in the number of floods recorded for the Tagus river basin over the last millennium. Clim Change 66:23–26CrossRefGoogle Scholar
  50. Wigley TML (1985) Impact of extreme events. Nature 316:106–107Google Scholar
  51. Wilks DS (1995) Statistical methods in the atmospheric sciences. Academic Press, San Diego, p 464Google Scholar
  52. Xoplaki E, Maheras P, Luterbacher J (2001) Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Clim Change 48:581CrossRefGoogle Scholar
  53. Xoplaki E, González-Rouco JF, Luterbacher J et al (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dynam 23:63–78Google Scholar
  54. Xoplaki E, Luterbacher J, Paeth H et al (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:L15713CrossRefGoogle Scholar
  55. Zhang X, Hogg WD, Bonsal BR (2001) A cautionary note on the use of seasonally varying thresholds to assess temperature extremes. Clim Change 50:505–507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Applied PhysicsUniversity of AlmeríaAlmeríaSpain

Personalised recommendations