Climatic Change

, Volume 86, Issue 3–4, pp 331–356 | Cite as

A 400-year tree-ring record of the Puelo River summer–fall streamflow in the Valdivian Rainforest eco-region, Chile

Article

Abstract

The Puelo River is a watershed shared between Chile and Argentina with a mean annual streamflow of 644 m3 s−1. It has a high ecologic and economic importance, including introduced farmed salmon, tourism, sports fishing and projected hydroelectricity. Using Austrocedrus chilensis and Pilgerodendron uviferum tree-ring records we reconstructed summer–fall (December–May) Puelo River streamflow, which is the first of such reconstructions developed in the Pacific domain of South America. The reconstruction goes back to 1599 and has an adjusted r2 of 0.42. Spectral analysis of the reconstructed streamflow shows a dominant 84-year cycle which explains 25.1% of the total temporal variability. The Puelo River summer–fall streamflow shows a significant correlation (P > 0.95, 1943–2002) with hydrological records throughout a vast geographic range within the Valdivian eco-region (35 to 46°S). Seasonal Puelo River interannual streamflow variability is related to large-scale oceanic and atmospheric circulation features. Summer–fall streamflows showed a significant negative correlation with the Antarctic Oscillation (AAO), whereas winter–spring anomalies appear to be positively connected with sea surface temperature variations in the tropical Pacific. In general, above- and below-average discharges in winter–spring are related to El Niño and La Niña events, respectively. The temporal patterns of the observed and reconstructed records of the Puelo River streamflow show a general decreasing trend in the 1943–1999 period. Projected circulation changes for the next decades in the Southern Hemisphere would decrease summer–fall Puelo River streamflows with significant impacts on salmon production, tourism and hydropower generation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceituno P (1988) On the functioning of the Southern Oscillation in the South American Sector. Part I. Surface Climate. Mon Weather Rev 116:505–524CrossRefGoogle Scholar
  2. Aceituno P, Fuenzalida H, Rosenblüth B (1993) Climate along the extratropical coast of South America. In: Mooney HA, Fuentes ER, Kronberg BI (eds) Earth systems responses to global change: contrast between North and South America. Academic, New York, USA, pp 61–69Google Scholar
  3. Aravena JC, Lara A, Wolodarsky-Franke A, Villalba R, Cuq E (2002) Tree-ring growth patterns and temperature reconstruction from Nothofagus pumilio (Fagaceae) forests at the upper tree line of Southern Chilean Patagonia. Rev Chilena de Hist Natural 75:361–376Google Scholar
  4. Arnell N, Liu C, Compagnucci R, da Cunha L, Hanaki K, Howe C, Mailu G, Shiklomanov I, Stakhiv E (2001) Hydrology and water resources. In: IPCC, Climate Change 2001. Impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, pp 193–233 (Chapter 4)Google Scholar
  5. Blasing TJ, Solomon AM, Duvick DN (1984) Response functions revisited. Tree-Ring Bull 44:1–15Google Scholar
  6. Boninsegna JA (1988) Santiago de Chile winter rainfall since 1220 as being reconstructed by tree rings. Quat South Am Antarct Penins 6:67–87Google Scholar
  7. Briffa KR (1995) Interpreting high-resolution proxy climate data: the example of dendroclimatology. In: Von Storch H, Navarra A (eds) Analysis of climate variability: applications of statistical techniques. Springer, Berlin, pp 77–94Google Scholar
  8. Brito-Castillo L, Díaz-Castro S, Salinas-Zavala CA, Douglas AV (2003) Reconstruction of long-term winter streamflow in the Gulf of California continental watershed. J Hidrol 278:39–50CrossRefGoogle Scholar
  9. Cobos DR, Boninsegna JA (1983) Fluctuations of some glaciers in the upper Atuel River basin, Mendoza, Argentina. Quat South Am Antarct Penins 1:61–82Google Scholar
  10. Cook ER (1985) A time series analysis approach to tree-ring standardization. PH.D. dissertation. University of Arizona, TucsonGoogle Scholar
  11. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior ring-width series for dendroclimatic studies. Tree-Ring Bull 41:45–53Google Scholar
  12. Cooley WW, Lohnes PR (1971) Multivariate data analysis. Wiley, New York, USAGoogle Scholar
  13. Diaz HF, Kiladis GN (1992) Atmospheric teleconnections associated with the extreme phases of the Southern Oscillation. In: Diaz HF, Markgraf V (eds) El Niño: historical and paleoclimatic aspects of the Southern Oscillation. Cambridge University Press, Cambridge, pp 7–28Google Scholar
  14. Dinerstein ED, Olson D, Graham A, Webster S, Primm M, Bookbinder G, Ledec (1995) A conservation assesment of the terrestrail ecoregiones of Latin America and the Caribbean, 129 p. WWF-World BankGoogle Scholar
  15. Fritts HC (1976) Tree rings and climate. Academic, London, p 567Google Scholar
  16. Fyfe JC, Boer GJ, Flato GM (1999) The Arctic and Antarctic Oscillations and their projected changes under global warming. Geophys Res Lett 26:1601–1604CrossRefGoogle Scholar
  17. Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273–275CrossRefGoogle Scholar
  18. Golden Software Inc. (1999) Surfer: a powerful contouring, gridding and surface mapping package for scientists and engineersGoogle Scholar
  19. Gordon GA, Le Duc SK (1981) Verification statistics for regression models. In: Am. Meteorol. Soc. (ed) Preprints seventh conference on probability and statistics in atmospheric sciences. Monterey, California, U.S.A., pp 129–133Google Scholar
  20. Hidalgo HG, Piechota TC, Dracup JA (2000) Alternative principal components regression procedures for dendrohydrologic reconstructions. Water Res 36(11):3241–3249CrossRefGoogle Scholar
  21. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurements. Tree-Ring Bull 43:69–75Google Scholar
  22. Holmes RL, Stockton CW, LaMarche VC (1979) Extension of river flow records in Argentina from long tree-ring chronologies. Water-Resour Bull 15(4):1081–1085Google Scholar
  23. Intergovernmental Panel on Climate Change (2001) Climate change 2001. In: Watson RT (ed) Synthesis report. IPCCGoogle Scholar
  24. Jain S, Woodhouse CA, Hoerling MP (2002) Multidecadal streamflow regimes in the interior Western United States: implications for the vulnerability of water resources. Geophys Res Lett 29(21)Google Scholar
  25. Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden Day, San Francisco, USA, p 525Google Scholar
  26. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  27. Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya cupressoides tree rings in Sourthern South America. Science 260:1104-1106CrossRefGoogle Scholar
  28. Lara A, Aravena JC, Wolodarsky A, Villalba R, Luckman B, Wilson R (2001) Dendroclimatology of high-elevation Nothofagus pumilio forests in the Central Andes of Chile. Can J For Res 31:925–936CrossRefGoogle Scholar
  29. Lara A, Soto D, Armesto J, Donoso P, Wernli C, Nahuelhual L, Squeo F (eds) (2003) Componentes científicos clave para una política nacional sobre usos, servicios y conservación de los bosques nativos Chilenos. Universidad Austral de Chile. Iniciativa Científica Milenio de Mideplan, p 134. (PDF version in http://www.forecos.net/libro/libroforecos.pdf)
  30. Lara A, Villalba R, Wolodarsky-Franke A, Aravena JC, Luckman B, Cuq E (2005a) Spatial and temporal variations in Nothofagus pumilio growth of treeline along its latitudinal range (35°40′ to 55° S) in the Chilean Andes. J Biogeogr 32:879–893CrossRefGoogle Scholar
  31. Lara A, Urrutia R, Villalba R, Luckman BH, Soto D, Aravena JC, Mc Phee J, Wolodarsky A, Pezoa L, León J (2005b) The potencial of tree-rings to reconstruct streamflow and estuarine salinity in the Valdivian Rainforest eco-region, Chile. Dendrochronologia 22:155–161CrossRefGoogle Scholar
  32. Lara A, Wolodarsky-Franke A, Aravena JC, Villalba R, Solari ME, Pezoa L, Rivera A, Le Quesne C (2005c) Climate fluctuations derived from tree-rings and other proxy-records in the Chilean Andes: state of the art and future prospects. In: Huber UM, Bugmann HK, Reasoner MA (eds) Global change and mountain regions. An overview of current knowledge. Springer, Dordrecht, The Netherlands, pp 145–156CrossRefGoogle Scholar
  33. León J (2005) Infuencia del caudal del río Puelo sobre la salinidad y la concentración de oxígeno disuelto en los primeros metros de la columna de agua del estuario de Reloncaví. M.Sc. Thesis, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, ChileGoogle Scholar
  34. Levi B, Aguilar A, Fuenzalida R (1966) Reconocimiento geológico de las Provincias de Llanquihue y Chiloé. Instituto de Investigaciones Geológicas. Boletín N° 19. SantiagoGoogle Scholar
  35. Meko D, Stockton CW, Boggess WR (1995) The tree-ring record of severe sustained drought. Water-Resour Bull 31(5):789–801Google Scholar
  36. Miller A (1976) The climate of Chile. In: Schwerdtfeger W (ed) World survey of climatology. Climates of Central and South America. Elsevier, Amsterdam, The Netherlands, pp 113–131Google Scholar
  37. Mitchell JM Jr, Dzerdseevskii B, Flohn H, Hofmeyr WL, Lamb HH, Rao KN, Wallen CC (1966) Climatic change, World Meteorological organization, Technical Note 79, p 79Google Scholar
  38. Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in Central Chile and associated circulation anomalies. J Clim 16(2):281–296CrossRefGoogle Scholar
  39. Niemeyer H, Cereceda P (1984) Hidrografía. Colección Geográfica de Chile. Tomo VIII. Santiago, Chile. Instituto Geográfico Militar, p 313Google Scholar
  40. Pederson N, Jacoby GC, D'Arrigo RD, Cook ER, Buckley BM, Dugarjav C, Mijiddorj R (2001) Hydrometeorological reconstructions for Northeastern Mongolia derived from tree rings: 1651–1995. J Clim 14(5):872–881CrossRefGoogle Scholar
  41. Pezoa LS (2003) Recopilación y análisis de la variación de las temperatures (período 1965–2001) y las precipitaciones (período 1931–2001) a partir de la información de estaciones meteorológicas de Chile entre los 33° y 53° de latitud sur. Thesis Escuela de Ingeniería Forestal. Universidad Austral de ChileGoogle Scholar
  42. Pittock AB (1980) Patterns of climate variation in Argentina and Chile - I. Precipitation, 1931–1960. Mon Weather Rev 108:1362–1369CrossRefGoogle Scholar
  43. Robinson EJ, Evans R (1980) A microcomputer-based tree ring measuring system. Tree-Ring Bull 40:59–64Google Scholar
  44. Roig F (1991) Dendrocronología y dendroclimatología del bosque de Pilgerodendron uviferum en su area norte de dispersión. Bol Soc Argent Bot 27:217–234Google Scholar
  45. Roig F, Le-Quesne C, Boninsegna JA, Briffa KH, Lara A, Grudd H, Jones PD, Villagrán C (2001) Climate variability 50,000 years ago in mid-latitude Chile as reconstructed from tree-rings. Nature 410:567–570CrossRefGoogle Scholar
  46. Rosenblüth B, Fuenzalida H, Aceituno P (1997) Recent temperature variations in Southern South America. Int J Climatol 17:67–85CrossRefGoogle Scholar
  47. Servicio Nacional de Geología y Minería (1982) Mapa Geológico de Chile escala 1:1,000,000. SantiagoGoogle Scholar
  48. Shindell DT, Schmidt GA (2004) Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys Res Lett 31(18):L18209, doi:10.1029/2004GL020724 CrossRefGoogle Scholar
  49. Soto D, Lara A (2001) Servicios ecosistémicos de los bosques nativos. In: Primack R, Rozzi R, Feisinger P, Dirzo R, Mazzardo F (eds). Fundamentos de conservación biológica: perspectivas Latinoamericanas. Fondo de Cultura Económica . Mexico D.F, pp 295–297Google Scholar
  50. Stockton CW, Jacoby GC Jr (1976) Long-term surface-water supply and streamflow trends in the Upper Colorado River Basin based on tree-ring analysis, Lake Powell Res. Project Bull. 18, Inst. of Geophys. and Planet. Phys., Univ. of Calif. Los AngelesGoogle Scholar
  51. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  52. Stone DA, Fyfe JC (2005) The effect of ocean mixing parametrisation on the enhanced CO2 response of the Southern Hemisphere midlatitude jet. Geophys Res Lett 32:L06811, doi:10.1029/2004GL022007 CrossRefGoogle Scholar
  53. Szeicz JM, Lara A, Díaz S, Aravena JC (2000) Dendrochronological studies of Pilgerodendron uviferum in Southwestern South America. In: Roig F (ed) Dendrocronología en América Latina. Ediciones Universidad de Cuyo, Mendoza, Argentina, pp 245–270Google Scholar
  54. Thompson D, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: Month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  55. Urrutia R, Lara A, Villalba R (2005) Cómo ha variado la disponibilidad de agua en la Eco-región de los bosques valdivianos en los últimos siglos? Revista Ambiente y Desarrollo 21(3):48–57Google Scholar
  56. Vautard R (1995) Patterns in time: SSA and MSSA. In: von Storch H, Navarra A (ed) Analysis of climate variability, applications of statistical techniques. Springer, Berlin, pp 259–279Google Scholar
  57. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35:395–424CrossRefGoogle Scholar
  58. Villalba R, Boninsegna JA, Lara A, Veblen T, Roig F, Aravena JC, Ripalta A (1996) Interdecadal climatic variations in millennial temperature reconstructions from Southern South America. In: Jones PD, RS Bradley, Jouzer J (eds) Climatic variations and forcing mechanisms of the last 2000 years. NATO ASI Series 141. Springer, Berlin, Heidelberg, pp 161–189Google Scholar
  59. Villalba R, Cook E, Jacoby G, D`Arrigo R, Veblen T, Jones P (1998) Tree-ring based reconstructions of northern Patagonia precipitation since AD 1600. The Holocene 8(6):659–674CrossRefGoogle Scholar
  60. Villalba R, D`Arrigo R, Cook E, Wiles G, Jacoby GC (2001) Decadal-scale climatic variability along the extratropical Western Coast of the Americas: evidences from tree-ring records. In: Markgraf V (ed) Inter-hemisferic climate linkages. Academic, San Diego, California, U.S.A., pp 155–172Google Scholar
  61. Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalta A (2003) Large-scale temperature changes across the Southern Andes: 20th-century variations in the context of the past 400 years. Clim Change 59:177–232CrossRefGoogle Scholar
  62. Viviroli D, Weingartner R, Messerli B (2003) Assessing the hydrological significance of the world’s mountains. Mt Res Dev 23(1):32–40CrossRefGoogle Scholar
  63. Wigley TM, Briffa KR, Jones PD (1984). On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  64. Woodhouse CA (2001) A tree-ring reconstruction of streamflow for the Colorado Front Range. J Am Water Resour Assoc 37(3):561–569CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Antonio Lara
    • 1
    • 2
  • Ricardo Villalba
    • 3
  • Rocío Urrutia
    • 1
    • 2
  1. 1.Laboratorio de Dendrocronología, Instituto de SilviculturaUniversidad Austral de ChileValdiviaChile
  2. 2.FORECOS Nucleus (Forest Ecosystemic Services to Aquatic Systems under Climatic Fluctuations)Millennium Scientific Initiative Nucleus of the Ministry of PlanningValdiviaChile
  3. 3.Departamento de Dendrocronología e Historia AmbientalInstituto Argentino de Nivología, Glaciología y Ciencias Ambientales, IANIGLAMendozaArgentina

Personalised recommendations