Climatic Change

, Volume 82, Issue 3–4, pp 235–265 | Cite as

Expert judgements on the response of the Atlantic meridional overturning circulation to climate change

  • Kirsten Zickfeld
  • Anders Levermann
  • M. Granger Morgan
  • Till Kuhlbrodt
  • Stefan Rahmstorf
  • David W. Keith
Article

Abstract

We present results from detailed interviews with 12 leading climate scientists about the possible effects of global climate change on the Atlantic Meridional Overturning Circulation (AMOC). The elicitation sought to examine the range of opinions within the climatic research community about the physical processes that determine the current strength of the AMOC, its future evolution in a changing climate and the consequences of potential AMOC changes. Experts assign different relative importance to physical processes which determine the present-day strength of the AMOC as well as to forcing factors which determine its future evolution under climate change. Many processes and factors deemed important are assessed as poorly known and insufficiently represented in state-of-the-art climate models. All experts anticipate a weakening of the AMOC under scenarios of increase of greenhouse gas concentrations. Two experts expect a permanent collapse of the AMOC as the most likely response under a 4×CO2 scenario. Assuming a global mean temperature increase in the year 2100 of 4 K, eight experts assess the probability of triggering an AMOC collapse as significantly different from zero, three of them as larger than 40%. Elicited consequences of AMOC reduction include strong changes in temperature, precipitation distribution and sea level in the North Atlantic area. It is expected that an appropriately designed research program, with emphasis on long-term observations and coupled climate modeling, would contribute to substantially reduce uncertainty about the future evolution of the AMOC.

Abbreviations

AMOC

Atlantic meridional overturning circulation

NADW

North Atlantic deep water

References

  1. Broecker W (1991) The great ocean conveyor. Oceanograhy 4:79–89Google Scholar
  2. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438:655–657, doi:10.1038/nature04385 CrossRefGoogle Scholar
  3. Budnitz RJ, Apostolakis G, Boore DM, Cluff LS, Coppersmith KJ, Cornell CA, Morris PA (1995) Use of technical expert panels: Applications to probabilistic seismic hazard analysis, Risk Analysis 18(4):463–469Google Scholar
  4. Curry R, Dickson B, Yashayaev I (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426:826–829CrossRefGoogle Scholar
  5. Curry R, Mauritzen C (2005) Dilution of the northern North Atlantic Ocean in recent decades. Science 308:1772–1774CrossRefGoogle Scholar
  6. Dalkey NC (1969) The use of self-ratings to improve group estimates. Technol Forecast 12:283–229Google Scholar
  7. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen NS, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjoernsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220CrossRefGoogle Scholar
  8. Dawes RM (1988) Rational choice in an uncertain world. Harcourt Brace Jovanovich, Orlando, FLGoogle Scholar
  9. Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837CrossRefGoogle Scholar
  10. Dickson RR, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38:241–295CrossRefGoogle Scholar
  11. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457CrossRefGoogle Scholar
  12. Goosse H, Renssen H, Selten FM, Haarsma RJ, Opsteegh JD (2002) Potential causes of abrupt climate events: a numerical study with a three-dimensional climate model. Geophys Res Lett 29(18):1860, doi:10.1029/2002GL014993 CrossRefGoogle Scholar
  13. Gregory J, Dixon K, Stouffer R, Weaver A, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus J, Kamenkovich I, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov A, Thorpe R (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703.1–L12703.5, doi:10.1029/2005GL023209 CrossRefGoogle Scholar
  14. Gregory J, Huybrechts P, Raper S (2004) Threatened loss of the Greenland ice-sheet. Nature 428:616CrossRefGoogle Scholar
  15. Häkkinen S, Rhines P (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science 304:555–559CrossRefGoogle Scholar
  16. Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844CrossRefGoogle Scholar
  17. Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, Johnson C (eds) (2001) Climate change 2001: Scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  18. Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432:608–610CrossRefGoogle Scholar
  19. Kahneman D, Slovic P, Tversky A (eds) (1982) Judgments under uncertainty: Heuristics and biases. Cambridge University Press, Camridge, UKGoogle Scholar
  20. Keith DW (1996) When is it appropriate to combine expert judgments? Clim Change 33:139–143CrossRefGoogle Scholar
  21. Knutti R, Flüćkiger J, Stocker T, Timmermann A (2004) Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 430:851–856CrossRefGoogle Scholar
  22. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Reviews of Geophysics (in press)Google Scholar
  23. Latif M, Röckner E, Mikolajewicz U, Voss R (2000) Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J Climate 13:1809–1813CrossRefGoogle Scholar
  24. Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354CrossRefGoogle Scholar
  25. Linstone H, Turoff M (1975) The Delphi Method: Techniques and applications. Addison-Wesley, Reading, MAGoogle Scholar
  26. Manabe S, Stouffer R (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Climate 1:841–866CrossRefGoogle Scholar
  27. Manabe S, Stouffer R (1994) Multiple-century response of a coupled ocean-atmosphere mocel to an increase of atmospheric carbon dioxide. J Climate 7:5–23CrossRefGoogle Scholar
  28. McManus J, Francois R, Gherardi J-M, Keigwin L, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837CrossRefGoogle Scholar
  29. Morgan MG, Adams PJ, Keith DW (2006) Elicitation of expert judgments of aerosol forcing. Clim Change 75:195–214CrossRefGoogle Scholar
  30. Morgan MG, Henrion M (1990) Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, New YorkGoogle Scholar
  31. Morgan MG, Keith D (1995) Subjective judgments by climate experts. Environ Sci Technol 29(10):468–476Google Scholar
  32. Morgan MG, Pitelka LF, Shevliakova E (2001) Elicitation of expert judgments of climate change impacts on forest ecosystems. Clim Change 49:279–307CrossRefGoogle Scholar
  33. Moss R, Schneider SH (2000) Uncertainties. In: Pachauri R, Taniguchi R, Tanaka K (eds) Guidance Papers on the Cross Cutting Issues of the Third Assessment Report of the IPCC. World Meteorological Organisation, Geneva, SwitzerlandGoogle Scholar
  34. Munk W, Wunsch C (1998) Abyssal recipes II. Deep-Sea Res, Part I 45:1977–2010CrossRefGoogle Scholar
  35. Petoukhov V, Claussen M, Berger A, Crucifix M, Eby M, Eliseev A, Fichefet T, Ganopolski A, Goose H, Kamenkovich I, Mokhov I, Montoya M, Mysak L, Sokolov A, Stone P, Wang Z, Weaver A (2005) EMIC Intercomparison Project (EMIP-CO2): Comparative analysis of EMIC simulations of climate and of equilibrium and transient responses to atmospheric CO2 doubling. Clim Dyn 25(4):363–385, doi:10.1007/s00382-005-0042-3 CrossRefGoogle Scholar
  36. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811CrossRefGoogle Scholar
  37. Rahmstorf S (1997) Risk of sea-change in the Atlantic. Nature 388:825–826CrossRefGoogle Scholar
  38. Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605, doi:10.1029/2005GL023655 CrossRefGoogle Scholar
  39. Schaeffer M, Selten FM, Opsteegh JD, Goosse H (2002) Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios. Geophys Res Lett 29(16), doi:10.1029/2002GL015254
  40. Spetzler CS, Stal von Holstein CAS (1975) Probability encoding in decision analysis. Manage Sci 22:340–352CrossRefGoogle Scholar
  41. Stocker T (1998) The seesaw effect. Science 282:61–62CrossRefGoogle Scholar
  42. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230CrossRefGoogle Scholar
  43. Stouffer R, Yin J, Gregory J, Dixon K, Spelman M, Hurlin W, Weaver A, Eby M, Flato G, Hasumi H, Hu A, Jungclaus J, Kamenkovich I, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier W, Robitaille D, Sokolov A, Vettoretti G, Weber S (2006) Investigating the causes of the response of the Thermohaline Circulation to past and future climate changes. J Climate 19:1365–1387CrossRefGoogle Scholar
  44. Talley L, Reid J, Robbins P (2003) Data-based meridional overturning streamfunctions for the global ocean. J Climate 16:3213–3226CrossRefGoogle Scholar
  45. Toggweiler J, Samuels B (1993) Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by southern hemisphere winds? In: The Global Carbon Cycle. Springer, BerlinGoogle Scholar
  46. Toggweiler J, Samuels B (1995) Effect of drake passage on the global thermohaline circulation. Deep-Sea Res, Part I 42:477–500CrossRefGoogle Scholar
  47. Trenberth K, Caron J (2001) Estimates of meridional atmosphere and ocean heat transport. Clim Dyn 14:3433–3443Google Scholar
  48. Vellinga M, Wood R (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267CrossRefGoogle Scholar
  49. Winton M (2003) On the climatic impact of ocean circulation. J Climate 16:2875–2889CrossRefGoogle Scholar
  50. Wood RA, Keen AB, Mitchell JFB, Gregory JM (1999) Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399:572–575CrossRefGoogle Scholar
  51. Wu P, Wood R, Stott P (2004) Does the recent freshening trend in the North Atlantic indicate a weakening in the thermohaline circulation? Geophys Res Lett 31:L027301, doi:10.1029/2003GL018584 Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • Kirsten Zickfeld
    • 1
    • 2
  • Anders Levermann
    • 2
  • M. Granger Morgan
    • 3
  • Till Kuhlbrodt
    • 2
  • Stefan Rahmstorf
    • 2
  • David W. Keith
    • 4
  1. 1.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada
  2. 2.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  3. 3.Department of Engineering and Public PolicyCarnegie Mellon UniversityPittsburghUSA
  4. 4.Department of Chemical and Petroleum EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations