Climatic Change

, Volume 81, Supplement 1, pp 53–70 | Cite as

An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections

  • M. Déqué
  • D. P. Rowell
  • D. Lüthi
  • F. Giorgi
  • J. H. Christensen
  • B. Rockel
  • D. Jacob
  • E. Kjellström
  • M. de Castro
  • B. van den Hurk
Article

Abstract

Ten regional climate models (RCM) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre boundary conditions. The response over Europe, calculated as the difference between the 2071–2100 and the 1961–1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance in eight sub-European boxes. Four sources of uncertainty can be evaluated with the material provided by the PRUDENCE project. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30). Model uncertainty is due to the fact that the models use different techniques to discretize the equations and to represent sub-grid effects. Radiative uncertainty is due to the fact that IPCC-SRES A2 is merely one hypothesis. Some RCMs have been run with another scenario of greenhouse gas concentration (IPCC-SRES B2). Boundary uncertainty is due to the fact that the regional models have been run under the constraint of the same global model. Some RCMs have been run with other boundary forcings. The contribution of the different sources varies according to the field, the region and the season, but the role of boundary forcing is generally greater than the role of the RCM, in particular for temperature. Maps of minimum expected 2m temperature and precipitation responses for the IPCC-A2 scenario show that, despite the above mentioned uncertainties, the signal from the PRUDENCE ensemble is significant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldrian E, Dümenil Gates L, Jacob D, Podzun R, Gunawan D (2004) Long term simulation of the Indonesian rainfall with the MPI Regional Model. Clim Dyn 22:795–814CrossRefGoogle Scholar
  2. Arribas A, Gallardo C, Gaertner MA, Castro M (2003) Sensitivity of Iberian Peninsula climate to land degradation. Clim Dyn 20:477–489Google Scholar
  3. Castro M, Fernández C, Gaertner MA (1993) Description of a meso-scale atmospheric numerical model. In: JI Díaz, JL Lions (eds) Mathematics, climate and environment, MassonGoogle Scholar
  4. Christensen JH, Christensen OB (2003) Climate modelling: severe summertime flooding in Europe. Nature 421:805–806CrossRefGoogle Scholar
  5. Christensen OB, Christensen JH (2004) Intensification of extreme European summer precipitation in a warmer climate. Glob Planet Change 44:107–117Google Scholar
  6. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change, doi:10.1007/s10584-006-9210-7 (this issue)
  7. Christensen JH, van Meijgaard E (1992) On the construction of a regional atmospheric climate model, DMI Technical Report 92–14. Available from DMI, Lyngbyvej 100, Copenhagen ØGoogle Scholar
  8. Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model, DMI Technical Report 96–4. Available from DMI, Lyngbyvej 100, Copenhagen ØGoogle Scholar
  9. Christensen OB, Christensen JH, Machenhauer B, Botzet M (1998) Very high-resolution regional climate simulations over Scandinavia – present climate. J Climate 11:3204–3229CrossRefGoogle Scholar
  10. Christensen JH, Christensen OB, Schultz JP (2001) High resolution physiographic data set for HIRHAM4: An application to a 50 km horizontal resolution domain covering Europe, DMI Technical Report 01–15. Available from DMI, Lyngbyvej 100, Copenhagen ØGoogle Scholar
  11. Christensen JH, CarterTR, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. EOS 83:147CrossRefGoogle Scholar
  12. Crossley JF, Polcher J, Cox PM, Gedney N, Planton S (2000) Uncertainties linked to land-surface processes in climate change simulations. Clim Dyn 16:949–961CrossRefGoogle Scholar
  13. Déqué M (2004) Uncertainties in PRUDENCE simulations: Global high resolution models, PRUDENCE Technical Report. Available at Météo-France, 42 Avenue Coriolis, 31057 Toulouse, France, pp 58Google Scholar
  14. Döscher R, Willén U, Jones CG, Rutgersson A, Meier H, Hansson E, Graham M (2002) The development of the coupled regional ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192Google Scholar
  15. Ferro CAT (2004) Attributing variation in a regional climate change modelling experiment, PRUDENCE Technical Report. Available at Dept. of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading RG6 6BB, UK, 21 ppGoogle Scholar
  16. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4124 doi:101029/2002JD002287 Google Scholar
  17. Gaertner MA, Christensen OB, Prego JA, Polcher J, Gallardo C, Castro M (2001) The impact of deforestation on the hydrological cycle in the western Mediterranean: an ensemble study with two regional climate models. Clim Dyn 17:857–873CrossRefGoogle Scholar
  18. Gallardo C, Arribas A, Prego JA, Gaertner MA, Castro M (2001) Multi-year simulations with a high resolution regional climate model over the Iberian Peninsula: Current climate and 2xCO2 scenario. Quart J Roy Meteor Soc 127:1659–1682Google Scholar
  19. Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339Google Scholar
  20. Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Clim Dyn 16:169–182CrossRefGoogle Scholar
  21. Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (REGCM2). Part I: Boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  22. Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (REGCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 21:2814–2832CrossRefGoogle Scholar
  23. Giorgi F, Huang Y, Nishizawa K, Fu C (1999) A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J Geophys Res 104:6403–6423CrossRefGoogle Scholar
  24. Giorgi F, Bi X, Pal JS (2004a) Means, trends and interannual variability in a regional climate change experiment over Europe. Part I: present day climate (1961–1990). Clim Dyn 22:733–756CrossRefGoogle Scholar
  25. Giorgi F, Bi X, Pal JS (2004b) Means, trends and interannual variability in a regional climate change experiment over Europe. Part II: future climate scenarios (2071–2100). Clim Dyn 23:839–858Google Scholar
  26. Hagemann S, Botzet M, Dümenil L, Machenhauer B (1999) Derivation of global GCM boundary conditions from 1 km land use satellite data, MPI Report, Max-Planck Institut für Meteorologie 289Google Scholar
  27. Heck P, Lüthi D, Wernli H, Schär C (2001) Climate impacts of European-scale anthropogenic vegetation changes: a study with a regional climate model. J Geophys Res-Atmos 106(D8):7817–7835CrossRefGoogle Scholar
  28. Hennemuth B, Rutgersson A, Bumke K, Clemens M, Omstedt A, Jacob D, Smedman AS (2003) Net precipitation over the Baltic Sea for one year using models and data-based methods. Tellus 55A:352–367Google Scholar
  29. Hudson DA, Jones RG (2002a) Simulations of present-day and future climate over southern Africa using HadAM3H, Hadley Centre Technical Note no 38, Met Office, Exeter, UKGoogle Scholar
  30. Hudson DA, Jones RG (2002b) Regional climate model simulations of present-day and future climates of southern Africa, Hadley Centre Technical Note no 39, Met Office, Exeter, UKGoogle Scholar
  31. IPCC (2001) Climate change. The scientific basis. The Edinburgh Building Shaftesbury Road, Cambridge CB2 2RU England pp 881Google Scholar
  32. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  33. Jacob D, Bärring L, Christensen OB, Christensen JH, Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sanchez E, Schär C, Seneviratne, SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change, doi:10.1007/s10584-006-9213-4 (this issue)
  34. Jones CG, Ullerstig A, Willén U, Hansson U (2004) The Rossby Centre regional atmospheric climate model (RCA). Part I: model climatology and performance characteristics for present climate over Europe. Ambio 33(4–5):199–210CrossRefGoogle Scholar
  35. Jones RG, Murphy JM, Hassell DC, Woodage MJ (2005) A high resolution atmospheric GCM for the generation of regional climate scenarios. Hadley Centre Technical Note 63, Met Office, Exeter, UKGoogle Scholar
  36. Kendall M, Stuart A, Ord JK (1977) The advanced theory of statistics. Vol 3: design and analysis, and time series, 4th edition, Charles Griffin and Co Ltd, 780 ppGoogle Scholar
  37. Kjellström E, Ruosteenoja K (2007) Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models. Clim Change, doi:10.1007/s10584-006-9219-y (this issue)
  38. Kjellström E, Döscher R, Meier HEM (2005) Atmospheric response to different sea surface temperatures in the Baltic Sea: coupled versus uncoupled regional climate model experiments. Nordic Hydrology 36:397–409Google Scholar
  39. Lehmann A, Lorenz P, Jacob D (2004) Exceptional Baltic Sea inflow events in 2002–2003. Geophysical Research Letters, 2004GL020830Google Scholar
  40. Lenderink G, van den Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present-day climate in RACMO2: first results and model developments, KNMI Technical Report 252, 24 ppGoogle Scholar
  41. Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice-ocean model for the Baltic Sea. Application to the salt inflow. J Geophys Res 108(C8):3273CrossRefGoogle Scholar
  42. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional – scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594CrossRefGoogle Scholar
  43. Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31CrossRefGoogle Scholar
  44. Roeckner E, Bengtsson L, Feichter J, Lelieveld J, Rodhe H (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J Climate 12:3004–3032CrossRefGoogle Scholar
  45. Rowell DP (2005) A scenario of European climate change for the late 21st century: seasonal means and interannual variability. Clim Dyn 25:837–849CrossRefGoogle Scholar
  46. Rowell DP (2006) A demonstration of the uncertainty in projections of the UK climate change resulting from regional model formulation. Clim Change 79:243–257Google Scholar
  47. Sanchez E, Gallardo C, Gaertner MA, Arribas A, Castro A (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44:163–180Google Scholar
  48. Schär C, Lüthi D, Beyerle U, Heise E (1999) The soil-precipitation feedback: a process study with a regional climate model. J Climate 12:722–741CrossRefGoogle Scholar
  49. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefGoogle Scholar
  50. Semmler T, Jacob D, Schlünzen KH, Podzun R (2004) Influence of sea ice treatment in a regional climate model on boundary layer values in the Fram Strait region. Mon Weather Rev 132:985–999CrossRefGoogle Scholar
  51. Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82:75–96CrossRefGoogle Scholar
  52. Vidale PL, Lüthi D, Frei C, Seneviratne S, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108(D18):4586, doi:10.1029/2002JD002810
  53. Von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, UK, p 484Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • M. Déqué
    • 1
  • D. P. Rowell
    • 2
  • D. Lüthi
    • 3
  • F. Giorgi
    • 4
  • J. H. Christensen
    • 5
  • B. Rockel
    • 6
  • D. Jacob
    • 7
  • E. Kjellström
    • 8
  • M. de Castro
    • 9
  • B. van den Hurk
    • 10
  1. 1.Météo-FranceCentre National de Recherches MétéorologiquesToulouse Cedex 01France
  2. 2.Met OfficeHadley Centre for Climate Prediction and ResearchExeter, DevonUK
  3. 3.Swiss Federal Institute of Technology, Institute for Atmospheric and Climate Science, ETHZürichSwitzerland
  4. 4.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  5. 5.Danish Meteorological InstituteCopenhagen ØDenmark
  6. 6.GKSS Forschungszentrum Geesthacht GmbHInstitute of Coastal ResearchGeesthachtGermany
  7. 7.Max-Planck-Institut für MeteorologieHamburgGermany
  8. 8.Swedish Meteorological and Hydrological InstituteNorrköpingSweden
  9. 9.Dept. de Ciencias AmbientalesUniversidad de Castilla La ManchaToledoSpain
  10. 10.KNMIDe BiltThe Netherlands

Personalised recommendations