Climatic Change

, Volume 81, Supplement 1, pp 343–355 | Cite as

First-order impacts on winter and summer crops assessed with various high-resolution climate models in the Iberian Peninsula

  • María Inés Mínguez
  • Margarita Ruiz-Ramos
  • Carlos H. Díaz-Ambrona
  • Miguel Quemada
  • Federico Sau


The first-order or initial agricultural impacts of climate change in the Iberian Peninsula were evaluated by linking crop simulation models to several high-resolution climate models (RCMs). The RCMs provided the daily weather data for control, and the A2 and B2 IPCC scenarios. All RCMs used boundary conditions from the atmospheric general circulation model (AGCM) HadAM3 while two were also bounded to two other AGCMs. The analyses were standardised to control the sources of variation and uncertainties that were added in the process. Climatic impacts on wheat and maize of climate were derived from the A2 scenario generated by RCMs bounded to HadAM3. Some results derived from B2 scenarios are included for comparisons together with impacts derived from RCMs using different boundary conditions. Crop models were used as impact models and yield was used as an indicator that summarised the effects of climate to quantify initial impacts and differentiate among regions. Comparison among RCMs was made through the choice of different crop management options. All RCM-crop model combinations detected crop failures for winter wheat in the South under control and future scenarios, and projected yield increases for spring wheat in northern and high altitude areas. Although projected impacts differed among RCMs, similar trends emerged for relative yields for some regions. RCM-crop model outputs compared favourably to others using European Re-Analysis data (ERA-15), establishing the feasibility of using direct daily outputs from RCM for impact analysis. Uncertainties were quantified as the standard deviation of the mean obtained for all RCMs in each location and differed greatly between winter (wheat) and summer (maize) seasons, being smaller in the latter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amthor JS, Loomis RS (1996) Integrating knowledge to crop responses to elevated CO2 and temperature with mechanistic simulation models: model component and research needs. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic, San Diego, CA, pp 317–345Google Scholar
  2. Carbone GJ, Kiechle W, Locke C, Mearns LO, McDaniel L, Downton MW (2003) Response of soybean and sorghum to varying spatial scales of climate change scenarios in the Southeastern United States. Clim Change 60:73–98CrossRefGoogle Scholar
  3. Castro M, Fernández C, Gaertner MA, Gallardo C (1995) Relevance of regional models for analyzing future climate change in the Iberian Peninsula. In: Moreno JM, Oechel WC (eds) Global change and Mediterranean-type ecosystems, vol 117. Springer, Berlin Heidelberg New York, pp 1–34Google Scholar
  4. Christensen JH, Carter TR, Giorgi F (2002) PRUDENCE employs new methods to assess European climate. EOS 83:147CrossRefGoogle Scholar
  5. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change, doi:10.1007/s10584-006-9210-7 (this issue)
  6. Flato GM, Boer GJ, Lee WG, Mcfarlane NA, Ramsden D, Reader MC, Weaver AJ (1997) Global coupled model and its climate. University of Victoria, B.C., CanadaGoogle Scholar
  7. Gabrielle B, Roche R, Angas P, Cantero-Martinez C, Cosentino L, Mantineo M, Langensiepen M, Henault C, Laville P, Nicoullaud B, Gosse G (2002) A priori parameterisation of the CERES soil-crop models and tests against several European data sets. Agronomie 22:119–132CrossRefGoogle Scholar
  8. Gates WL (1985) The use of general circulation models in the analysis of the ecosystem impacts of climatic change. Clim Change 7:267–284CrossRefGoogle Scholar
  9. Gibson JK, Kållberg P, Uppala S, Hernandez A, Nomura A, Serrano E (1999) ERA-15 Description, Version 2, Project Report Series, Reading UKGoogle Scholar
  10. Gonzalez-Maler MA, Taneva L, Trueman RJ (2004) Plant respiration and elevated CO2 concentration: cellular responses and global significance. Ann Bot 94:647–656CrossRefGoogle Scholar
  11. Guereña A, Ruiz-Ramos M, Diaz-Ambrona CH, Conde JR, Minguez MI (2001) Assessment of climate change and agriculture in Spain using climate models. Agron J 93:237–249CrossRefGoogle Scholar
  12. Iglesias A, Mínguez MI (1995) Perspectives for maize production in Spain under climate change. In: Rosenzweig C, Allen LH Jr, Harper LA, Hollinger SE, Jones JW (eds) Climate change and agriculture: analysis of potential international impacts, vol 13. American Society of Agronomy, Madison, WI, pp 259–273Google Scholar
  13. Iglesias A, Rosenzweig C, Pereira D (2000) Agricultural impacts of climate change in Spain: developing tools for a spatial analysis. Global Environmental Change—Human and Policy Dimensions 10:69–80Google Scholar
  14. Johns TE, Carnell RE, Crosslley JF, Mitchell JFB, Senior CA, Tett SFB, Wood RA (1997) The second Hadley Centre coupled ocean–atmosphere GCM: Model description, spinup and validation. Clim Dyn 13:103–134CrossRefGoogle Scholar
  15. López-Cedrón FX, Boote KJ, Ruíz-Nogueira B, Sau F (2005) Testing CERES-Maize versions to estimate maize production in a cool environment. Eur J Agron 14:89–102CrossRefGoogle Scholar
  16. Mariscal MJ (1993) Efectos de la fecha de siembra sobre el crecimiento, desarrollo, producción y uso de agua de genotipos de trigo que difieren en necesidades de vernalización, Master, Universidad de CórdobaGoogle Scholar
  17. Mearns LO (2003) Issues in the impacts of climate variability and change on agriculture. Clim Change 60:1–6CrossRefGoogle Scholar
  18. Mearns LO, Giorgi F, Mcdaniel L, Shields C (2003) Climate scenarios for the southeast U.S. based on GCM and regional model simulations. Clim Change 60:7–35CrossRefGoogle Scholar
  19. Nakicenovic N, Alcamo J, Davis G, De Vries B, Fehhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Emilio De La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schelesinger ME, Shukla PR, Smith S, Swart RJ, Van Rooyen S, Victor N, Dadi Z (2000) Special report on emissions scenarios, vol. Cambridge University Press, Cambridge, UKGoogle Scholar
  20. Parson EA, Corell RW, Barron EJ, Burkett V, Janetos A, Joyce L, Karl TR, Maccraken MC, Melillo J, Grangermorgan M, Schimel DS, Wilbanks T (2003) Understanding climatic impacts, vulnerabilities and adaptation in the United States: building a capacity for assessment. Clim Change 57:9–42CrossRefGoogle Scholar
  21. Passioura KB (1996) Simulation models: science, snake oil, education, or engineering? Agron J 88:690–694CrossRefGoogle Scholar
  22. Quemada M, Cabrera ML, Mccracken DV (1997) Nitrogen released from surface-applied cover crop residues: evaluating CERES-N. Agron J 89:723–729CrossRefGoogle Scholar
  23. Rebollo J (1993) Calibración y verificación de un modelo de simulación de trigo (Ceres-Wheat) para las condiciones del Valle del Guadakquivir y su aplicación al análisis de estrategias de riego, Master, Universidad de CórdobaGoogle Scholar
  24. Ritchie JT, Otter S (1985) Description and performance of CERES-Wheat: a user-oriented wheat yield model. In: Serv NTI (ed) ARS wheat yield project, vol ARS-38. Springfield, Missouri, pp 159–175Google Scholar
  25. Triggs JM, Kimball BA, Pinter PJ, Wall GW, Conley MM, Brooks TJ, Lamorte RL, Adam NR, Ottman MJ, Matthias AD, Leavitt SW, Cerveny RS (2004) Free-air CO2 enrichment effects on the energy balance and evapotranspiration of sorghum. Agric For Meteorol 124:63–79CrossRefGoogle Scholar
  26. Trueba C, Millán R, Schmid T, Lago C, Gutiérrez J (2000) Indices de vulnerabilidad radiológica para los suelos peninsulares españoles., Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas., MadridGoogle Scholar
  27. Tsuji GY, Uehara G, Balas S (1994) Decision support systems for agrotechnology transfer, ver.3., IBSNAT. Univ. of Hawaii, Honolulu, HIGoogle Scholar
  28. Tubiello FN, Ewert F (2002) Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Eur J Agron 18:57–74CrossRefGoogle Scholar
  29. Tubiello FN, Rosenzweig C, Kimball BA, Pinter PJ, Wall GW, Hunsaker DJ, Lamorte RL, Garcia RL (1999) Testing CERES-wheat with free-air carbon dioxide enrichment (FACE) experiment data: CO2 and water interactions. Agron J 91:247–255CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • María Inés Mínguez
    • 1
  • Margarita Ruiz-Ramos
    • 1
  • Carlos H. Díaz-Ambrona
    • 1
  • Miguel Quemada
    • 1
  • Federico Sau
    • 2
  1. 1.Depto de Producción Vegetal: Fitotecnia, E.T.S. Ingenieros AgrónomosUniversidad Politécnica de Madrid, Ciudad UniversitariaMadridSpain
  2. 2.Depto de Producción Vegetal, Depto Producción VegetalUniversidad de Santiago de Compostela EPS-USCLugoSpain

Personalised recommendations