Climatic Change

, Volume 81, Issue 1, pp 85–99 | Cite as

What explains agricultural performance: climate normals or climate variance?

  • Robert Mendelsohn
  • Alan Basist
  • Ariel Dinar
  • Pradeep Kurukulasuriya
  • Claude Williams


This paper measures the influence of climate normals (average long-term surface wetness and temperature) and interannual climate variance on farms in the United States and Brazil using satellite data. The paper finds that just climate normals or just climate variance variables can explain both net revenues and how much land is used for cropland. However, because they are correlated with each other, it is important to include both normals and variance in the same statistical model to get accurate measures of their individual contribution to farm outcomes. In general, higher climate variance increases the probability that land is used for cropland in both countries and higher temperatures reduce both cropland and land values. Other annual effects were not consistent across the two countries.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams R, McCarl B (2001) Agriculture: agronomic–economic analysis. In Mendelsohn R (ed) Global warming and the American economy. Edward Elgar, Cheltenham, UKGoogle Scholar
  2. Adams R, Glyer D, McCarl B (1989) The economic effects of climate change in US agriculture: a preliminary assessment. In Tirpak D, Smith J (eds) The potential effects of global climate change on the United States: report to congress (EPA-230-05-89-050). US Environmental Protection Agency, Washington DCGoogle Scholar
  3. Adams R, McCarl B, Segerson K, Rosenzweig C, Bryant K, Dixon B, Conner R, Evenson R, Ojima D (1999) The economic effects of climate change on US agriculture. In Mendelsohn R, Neumann J (eds) The impact of climate change on the economy of the United States. Cambridge University Press, Cambridge, UKGoogle Scholar
  4. Basist AN, Peterson N, Peterson T, Williams C (1998) Using the Special Sensor Microwave Imager to monitor land surface, wetness, and snow cover. J Appl Meteor 37:888–911CrossRefGoogle Scholar
  5. Basist A, Williams C Jr, Grody N, Ross TE, Shen S, Chang A, Ferraro R, Menne M (2001) Using the Special Sensor Microwave Imager to monitor surface wetness. J Hydrometeorol 2:297–308CrossRefGoogle Scholar
  6. Cline W (1996) The impact of global warming on agriculture: comment. Am Econ Rev 86:1309–1312Google Scholar
  7. Darwin R (1999) Comment on the impact of global warming on Agriculture: a Ricardian analysis. Am Econ Rev 89:1049–1052CrossRefGoogle Scholar
  8. Ferraro RR, Weng F, Grody N, Basist A (1996) An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, sea ice derived from SSM/I measurements. Bull Am Meteorol Soc 77:891–905CrossRefGoogle Scholar
  9. Grody NC, Basist A (1996) Global identification of snowcover using SSM/I measurements. IEEE Trans Geosci Remote Sens 34:237–249CrossRefGoogle Scholar
  10. Houghton J, Ding Y, Griggs D, Noguer M, Van der Linden P, Dai X, Maskell K, Johnson C (eds) (2001) Climate change 2001: the scientific basis. Intergovernmental Panel on Climate Change, Cambridge University Press, CambridgeGoogle Scholar
  11. McFarland JM, Miller R, Neale C (1990) Land surface temperature derived from the SSM/I passive microwave brightness temperatures. IEEE Trans Geosci Remote Sens 28:839–845CrossRefGoogle Scholar
  12. Mearns L, Rosenzweig C, Goldberg R (1997) Mean and variance change in climate scenarios: methods, agricultural applications, and measure of uncertainty. Clim Change 35:367–396CrossRefGoogle Scholar
  13. Mendelsohn R, Dinar A (2003) Climate, water, and agriculture. Land Econ 79:328–341CrossRefGoogle Scholar
  14. Mendelsohn R, Nordhaus W (1999) Reply to Darwin. Am Econ Rev 89:1053–1055CrossRefGoogle Scholar
  15. Mendelsohn R, Nordhaus W, Shaw D (1994) The impact of global warming on agriculture: a Ricardian analysis. Am Econ Rev 84:753–771Google Scholar
  16. Mendelsohn R, Nordhaus W, Shaw D (1996) Climate impacts on aggregate farm values: Accounting for adaptation. Agric For Meteorol 80:55–67CrossRefGoogle Scholar
  17. Mendelsohn R, Dinar A, Sanghi A (2001) The effect of development on the climate sensitivity of agriculture. Environ Dev Econ 6:85–101CrossRefGoogle Scholar
  18. Neale CMU, McFarland M, Chang K (1990) Land-surface-type classification using microwave brightness temperatures from the Special Sensor Microwave/Imager. IEEE Trans Geosci Remote Sens 28:829–837CrossRefGoogle Scholar
  19. Njoku EG (1994). Surface temperature estimation over land using satellite microwave radiometry. Remote sensing of land–atmosphere interactions. St. Laury, France, pp 509–530Google Scholar
  20. Prigent C, Rossow W, Matthews E (1997). Microwave land surface emissivities estimated from SSM/I. J Geophys Res 102:21867–21890CrossRefGoogle Scholar
  21. Reilly J, Baethgen W, Chege F, van de Geijn S, Enda L, Iglesias A, Kenny G, Patterson D, Rogasik J, Rotter R, Rosenzweig C, Sombroek W, Westbrook J (1996) Agriculture in a changing climate: impacts and adaptations. In Watson R, Zinyowera M, Moss R, Dokken D (eds) Climate change 1995: intergovernmental panel on climate change impacts, adaptations, and mitigation of climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  22. Rosenzweig C, Parry M (1994) Potential impact of climate change on world food supply. Nature 367:133–138CrossRefGoogle Scholar
  23. Schneider S (1997) Integrated assessment modelling of global climate change: transparent rational tool for policy making or opaque screen hiding value-laden assumptions. Environ Model Assess 2:229–248CrossRefGoogle Scholar
  24. Schlenker W, Hanemann M, Fischer A (2005) Will US agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach. Am Econ Rev 95(1):395–406CrossRefGoogle Scholar
  25. United States Department of Agriculture (USDA) (1997) 1997 Census of agriculture (CD-ROM set). National Agricultural Statistics Service, Washington, DCGoogle Scholar
  26. Vinnikov KY, Robock A, Qui S, Entin J, Owe M, Choudhury B, Hollinger S, Njoku G (1999) Satellite remote sensing of surface wetness in Illinois, United States. J Geophys Res 104:4145–4165CrossRefGoogle Scholar
  27. Weng F, Grody N (1998) Physical retrieval of land surface temperature using the Special Sensor Microwave Imager. J Geophys Res 103:8839–8848CrossRefGoogle Scholar
  28. Williams C, Basist A, Peterson T, Grody N (1999) Calibration and validation of land surface temperature anomalies derived from the SSM/I. Bull Am Meteorol SocGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Robert Mendelsohn
    • 1
  • Alan Basist
    • 2
  • Ariel Dinar
    • 3
  • Pradeep Kurukulasuriya
    • 4
  • Claude Williams
    • 5
  1. 1.Yale FESNew HavenUSA
  2. 2.Commodity Hedgers IncAlexanderUSA
  3. 3.World BankWashingtonUSA
  4. 4.Yale FESNew HavenUSA
  5. 5.National Climatic Data CenterAshevilleUSA

Personalised recommendations