Climatic Change

, Volume 83, Issue 1–2, pp 215–240

Climate and cultural history of the Northeastern Yucatan Peninsula, Quintana Roo, Mexico

Article

Abstract

We inferred the Holocene paleoclimate history of the northeastern Yucatan Peninsula, Mexico, by studying stratigraphic variations in stable isotopes (δ18O and δ13C) and lithologic properties (organic matter and carbonate content) in sediment cores taken in 6.3 and 16.2 m of water from Lake Punta Laguna. We present a simple model to explain the lithologic and isotopic variations, and discuss the inferred paleoclimate history in terms of its relation to ancient Maya cultural development. We find evidence for lower lake level and drier climate at about the same time as each major discontinuity in Maya cultural history: Preclassic Abandonment (150–250 A.D.), Maya Hiatus (534 to 593 A.D.), Terminal Classic Collapse (750–1050 A.D.), and Postclassic Abandonment (mid-fifteenth century). Although these broad temporal correlations suggest climate played a role in Maya cultural evolution, chronological uncertainties preclude a detailed analysis of climate changes and archaeologically documented cultural transformations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews AP, Andrews EW, Robles FC (2003) The Northern Maya collapse and its aftermath. Anc Mesoam 14:151–156CrossRefGoogle Scholar
  2. Anselmetti FS, Hodell DA, Ariztegui D, Brenner M, Rosenmeier M (in prep.) Quantification of soil erosion rates related to ancient maya deforestationGoogle Scholar
  3. Boose ER, Foster DR, Barker Plotkin A, Hall B (2003) Geographical and historical variation in hurricanes across the Yucatan Peninsula. In: Gomez-Pompa A, Allen MF, Fedick SL, Jimenez-Osornio JJ (eds) The lowland maya: three millennia at the human–wildland interface. Haworth, Binghamton, pp 495–516Google Scholar
  4. Castillo AB, Peraza RLZ (1991) Punta Laguna: Un Sitio Prehispanico de Quintana Roo. Estud Cult Maya 18:23–64Google Scholar
  5. Curtis JH, Hodell DA, Brenner M (1996) Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 yr, and implications for Maya cultural evolution. Quat Res 46:37–47CrossRefGoogle Scholar
  6. Dahlin BH (1983) Climate and prehistory on the Yucatan Peninsula. Clim Change 5:245–263CrossRefGoogle Scholar
  7. Dahlin BH (2002) Climate change and the end of the classic period in Yucatan. Anc Mesoam 13:327–340CrossRefGoogle Scholar
  8. Deevey ES, Stuiver M (1964) Distribution of natural isotopes of carbon in Linsley Pond and other New England lakes. Limnol Oceanogr 9:1–11CrossRefGoogle Scholar
  9. Demarest AA, Rice PM, Rice DS (2004) The terminal classic in the Maya lowlands: assessing collapses, terminations, and transformations. In: Demarest AA, Rice PM, Rice DS (eds) The terminal classic in the Maya lowlands. University Press of Colorado, Boulder, Colorado, pp 545–572Google Scholar
  10. Diamond J (2005) Collapse: how societies choose to fail or succeed. Viking, New York, p 575Google Scholar
  11. Dunning NP (1995) Coming together at the temple mountain: environment, subsistence, and the emergence of Classic Maya segmentary states. In: Grube N (ed) The emergence of Classic Maya civilization, Verlag von Flemming, Möckmühl, pp 61–70Google Scholar
  12. Dunning NP, Luzzadder-Beach S, Beach T, Jones JG, Scarborough V, Culbert TP (2002) Arising from the Bajos: the evolution of a neotropical landscape in the rise of Maya civilization. Ann Assoc Am Geogr 92:267–283CrossRefGoogle Scholar
  13. Engleman EE, Jackson LL, Norton DR (1985) Determination of carbonate carbon in geological materials by coulometric titration. J Great Lakes Res 2:232–307Google Scholar
  14. Erickson CL (1999) Neo-environmental determinism and agrarian ‘collapse’ in Andean prehistory. Antiquity 73:634–642Google Scholar
  15. Folan WJ (1983) Summary and conclusions. In: Folan WJ, Kintz ER, Fletcher LA (eds) Cobá, a classic Maya metropolis. Academic, New York, pp 211–217Google Scholar
  16. Folan WJ, Gunn J, Eaton JD, Patch RW (1983) Paleoclimatological patterning in Southern Mesoamerica. J Field Archaeol 10:454–468Google Scholar
  17. Giddings L, Soto M (2003) Rhythms of precipitation in the Yucatan peninsula. In: Gomez-Pompa A, Allen MF, Fedick SL, Jimenez-Osornio JJ (eds) The lowland Maya: three millennia at the human–wildland interface. Haworth, Binghamton, New York, pp 77–89Google Scholar
  18. Gill RB (2000) The great Maya droughts: water, life, and death. University of New Mexico Press, Albuquerque, p 464Google Scholar
  19. Gray CR (1993) Regional meteorology and hurricanes. In: Maul GA (ed) Climatic change in the intra-Americas sea. Edward Arnold, London, pp 87–99Google Scholar
  20. Hansen RD (1998) Continuity and disjunction: preclassic antecedents of classic Maya architecture. In: Houston SD (ed) Function and meaning in classic Maya architecture. Dumbarton Oaks, Washington, District of Columbia, pp 49–122Google Scholar
  21. Hansen RD (2001) The first cities – the beginnings of urbanization and state formation in the Maya lowlands. In: Grube N (ed) Maya: divine kings of the rain forest. Konemann-Verlag, Germany, pp 50–65Google Scholar
  22. Hansen RD, Bozarth S, Jacob J, Wahl D, Schreiner T (2002) Climatic and environmental variability in the rise of Maya civilization. Anc Mesoam 13:273–295CrossRefGoogle Scholar
  23. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the holocene. Science 293:1304–1308CrossRefGoogle Scholar
  24. Haug GH, Gunther D, Peterson LC, Sigman DM, Hughen KA, Aeschlimann B (2003) Climate and the collapse of Maya civilization. Science 299:1731–1735CrossRefGoogle Scholar
  25. Hodell DA, Brenner M, Curtis JH, Medina-Gonzalez R, Rosenmeier MF, Guilderson TP, Chan-Can EI, Albornaz-Pat A (2005a) Climate change on the Yucatan peninsula during the little ice age. Quat Res 63:109–121CrossRefGoogle Scholar
  26. Hodell DA, Brenner M, Curtis JH (2005b) Terminal classic drought in the Northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat Sci Rev 24:1413–1427CrossRefGoogle Scholar
  27. INEGI (Instituto Nacional de Estadistica Geografia e Informatica) (1981) 1:1000000 Merida, Carta de Evaportranspiracion y Deficit de Agua, Merida, Yucatan, MexicoGoogle Scholar
  28. Kelts K, Hsu KJ (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, Berlin Heidelberg New York, pp 295–324Google Scholar
  29. Kowalski JK (1994) The Puuc as seen from Uxmal. In: Prem HJ (ed) Hidden among the hills: Maya archaeology of the Northwest Yucatan peninsula. Verlag von Flemming, Möckmühl, pp 99–120Google Scholar
  30. Kowalski JK, Dunning NP (1999) The architecture of Uxmal: the symbolics of statemaking at a Puuc Maya regional capital. In: Kowalski JK (ed) Mesoamerican architecture as a cultural symbol. Oxford University Press, New York, pp 274–297Google Scholar
  31. Lawrence JR (1998) Isotopic spikes from tropical cyclones in surface waters: opportunities in hydrology and paleoclimatology. Chem Geol 144:153–160CrossRefGoogle Scholar
  32. Lawrence JR, Gedzelman D, Zhang X, Arnold R (1998) Stable isotope ratios of rain and vapor in 1995 hurricanes. J Geophys Res 103:11382–11400Google Scholar
  33. Leyden BW, Brenner M, Dahlin B (1998) Cultural and climatic history of Coba, a lowland Maya city in Quintana Roo, Mexico. Quat Res 49:111–122CrossRefGoogle Scholar
  34. Li H-C, Ku T-L (1997) δ13C–δ18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeogr Palaeoclimatol Palaeoecol 133:69–80CrossRefGoogle Scholar
  35. Lucerno LJ (2002) The collapse of the Classic Maya: a case for the role of water control. American Anthropologist 104:814–826Google Scholar
  36. Milbrath S, Peraza C (2003) Revisiting Mayapan: Mexico’s last Maya capital. Anc Mesoam 14:1–46CrossRefGoogle Scholar
  37. Milne GA, Long AJ, Bassett SE (2005) Modelling holocene relative sea-level observations from the Caribbean and South America. Quat Sci Rev 24:1183–1202CrossRefGoogle Scholar
  38. Moholy-Nagy H (2003) The hiatus at Tikal, Guatemala. Anc Mesoam 14:77–83CrossRefGoogle Scholar
  39. Perry E, Velazquez-Oliman G, Marin L (2002) The hydrogeochemistry of the karst aquifer system of the Northern Yucatan peninsula, Mexico. Int Geol Rev 44:191–221Google Scholar
  40. Perry E, Velazquez-Oliman G, Socki RA (2003) Hydrogeology of the Yucatán Peninsula. In: Gomez-Pompa A, Allen MF, Fedick SL, Jimenez-Osornio JJ (eds) The lowland Maya: three millennia at the human–wildland interface. Haworth, Binghamton, pp 115–138Google Scholar
  41. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hughen KA, Kromer B, McCormac FG, Manning S, Bronk Ramsey C, Reimer RE, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 Cal Kyr BP. Radiocarbon 46:1029–1058Google Scholar
  42. Rice PM, Demarest AA, Rice DS (2004) The terminal classic and the “Classic Maya Collapse” in perspective. In: Demarest AA, Rice PM, Rice DS (eds) The terminal classic in the Maya lowlands. University Press of Colorado, Boulder, Colorado, pp 1–11Google Scholar
  43. Robles Castellanos F (1990) La Secuencia Cerámica de la Región de Cobá, Quintana Roo. Instituto Nacional de Antropología e Historia, Mexico, DFGoogle Scholar
  44. Rosenmeier MF, Hodell DA, Brenner M, Curtis JH, Martin JB (2002) A 4000-year record of environmental change in the Southern Maya Lowlands of Peten, Guatemala. Quat Res 57:183–190CrossRefGoogle Scholar
  45. Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns of modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. American Geophyscial Union, Washington, District of Columbia, pp 1–36Google Scholar
  46. Scarborough VL, Gallopin GC (1991) A water storage adaptation in the Maya Lowlands. Science 251:658–662Google Scholar
  47. Suhler C, Ardren T, Johnstone D (1998) The chronology of Yaxuna: evidence from excavations and ceramics. Anc Mesoam 9:167–182CrossRefGoogle Scholar
  48. Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen ratios in primary lacustrine carbonates. Chem Geol 80:261–279Google Scholar
  49. Therrell MD, Stahle DW, Soto Acuna R (2004) Aztec drought and the curse of one rabbit. Bull Am Meteorol Soc 85:1263–1272CrossRefGoogle Scholar
  50. Webster D (2002) The fall of the ancient Maya: solving the mystery of the Maya collapse. Thames and Hudson, London, p 368Google Scholar
  51. Willey GR (1974) The classic Maya hiatus: a “rehearsal” for the collapse? In: Hammond N (ed) Mesoamerican archaeology: new approaches. University of Texas Press, Austin, pp 417–430Google Scholar
  52. Yaeger J, Hodell DA (in press) Climate–culture–environment interactions and the collapse of classic Maya civilization. In: Sandweiss DH, Quilter J (eds) El niño, catastrophism, and culture change in ancient America. Dunbarton Oaks, Washington, District of ColumbiaGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of FloridaGainesvilleUSA
  2. 2.Land Use and Environmental Change Institute (LUECI)University of FloridaGainesvilleUSA

Personalised recommendations