Climatic Change

, Volume 81, Issue 2, pp 119–159 | Cite as

Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs

  • Detlef P. van Vuuren
  • Michel G. J. den Elzen
  • Paul L. Lucas
  • Bas Eickhout
  • Bart J. Strengers
  • Bas van Ruijven
  • Steven Wonink
  • Roy van Houdt
Open Access
Article

Abstract

On the basis of the IPCC B2, A1b and B1 baseline scenarios, mitigation scenarios were developed that stabilize greenhouse gas concentrations at 650, 550 and 450 and – subject to specific assumptions – 400 ppm CO2-eq. The analysis takes into account a large number of reduction options, such as reductions of non-CO2 gases, carbon plantations and measures in the energy system. The study shows stabilization as low as 450 ppm CO2-eq. to be technically feasible, even given relatively high baseline scenarios. To achieve these lower concentration levels, global emissions need to peak within the first two decades. The net present value of abatement costs for the B2 baseline scenario (a medium scenario) increases from 0.2% of cumulative GDP to 1.1% as the shift is made from 650 to 450 ppm. On the other hand, the probability of meeting a two-degree target increases from 0%–10% to 20%–70%. The mitigation scenarios lead to lower emissions of regional air pollutants but also to increased land use. The uncertainty in the cost estimates is at least in the order of 50%, with the most important uncertainties including land-use emissions, the potential for bio-energy and the contribution of energy efficiency. Furthermore, creating the right socio-economic and political conditions for mitigation is more important than any of the technical constraints.

References

  1. Alcamo J, Kreileman E, Krol M, Leemans R, Bollen J, van Minnen J, Schaeffer M, Toet S, de Vries HJM (1998) Global modelling of environmental change: on overview of IMAGE 2.1. In: Alcamo J, Leemans R, Kreileman E (eds) Global change scenarios of the 21st century. Results from the IMAGE 2.1 model. Elsevier Science, London, pp 3–94Google Scholar
  2. Azar C (1998) The timing of CO2 emissions reductions: the debate revisited. Int J Environ Pollut 10:508–521Google Scholar
  3. Azar C, Rodhe H (1997) Targets for stabilization of atmospheric CO2. Science 276:1818–1819CrossRefGoogle Scholar
  4. Azar C, Dowlatabadi H (1999) A review of technical change in assessment of climate policy. Annu Rev Energy Environ 24:513–544CrossRefGoogle Scholar
  5. Azar C, Lindgren K, Larson E, Möllersten K (2006) Carbon capture and storage from fossil fuels and biomass – costs and potential role in stabilizing the atmosphere. Clim Change 74(1–3):47–79CrossRefGoogle Scholar
  6. Barker T, Pan H, Koehler J, Warren R, Winne S (2005) Induced technological change in the stabilisation of carbon dioxide concentrations in the atmosphere: scenario using a large-scale econometric model. In: Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climatic change. Cambridge University Press, Cambridge, UKGoogle Scholar
  7. Berk M, van Minnen J, Metz B, Moomaw W, den Elzen M, van Vuuren DP, Gupta J (2002) Climate OptiOns for the Long term (COOL). Global Dialogue – Synthesis Report. MNP Netherlands Environmental Assessment Agency, Bilthoven. www.mnp.nl/en
  8. Bruinsma J (2003) World agriculture: towards 2015/2030. An FAO perspective. EarthScan, LondonGoogle Scholar
  9. Carpenter S, Pingali P (2005) Millennium Ecosystem Assessment – scenarios assessment. Island Press, Washington, District of ColumbiaGoogle Scholar
  10. Corfee Morlot J, Smith J, Agrawala S, Franck T (2005) Article 2, Long-term goals and post-2012 commitments: where do we go from here with climate policy? Climate Policy 5(3)Google Scholar
  11. Criqui P, Kitous A, Berk MM, den Elzen MGJ, Eickhout B, Lucas P, van Vuuren DP, Kouvaritakis N, Vanregemorter D (2003) Greenhouse gas reduction pathways in the UNFCCC Process up to 2025 – Technical Report. CNRS-IEPE, Grenoble, FranceGoogle Scholar
  12. de Beer J (1998) Potential for industrial energy efficiency improvement in the long term. Department of Science, Technology and Society, Utrecht UniversityGoogle Scholar
  13. de Vries HJM, van Vuuren DP, den Elzen MGJ, Janssen MA (2001) The Targets Image Energy model regional (TIMER) – Technical documentation. MNP Netherlands Environmental Assessment Agency, Bilthoven, the Netherlands. www.mnp.nl/en
  14. den Elzen MGJ, Lucas P (2005) The FAIR model: a tool to analyse environmental and costs implications of climate regimes. Environ Model Assess 10(2):115–134CrossRefGoogle Scholar
  15. den Elzen MGJ, Meinshausen M (2005) Meeting the EU 2 degree target: global and regional emission implications. MNP Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands. www.mnp.nl/en
  16. den Elzen M, Lucas P, van Vuuren DP (2006) Regional abatement costs and options under allocation schemes for emission allowances for low CO2-equivalent concentrations (submitted)Google Scholar
  17. den Elzen MGJ, Meinshausen M, van Vuuren DP (2007). Multi-gas emission envelopes to meet greenhouse gas concentration targets: costs versus certainty of limiting temperature increase. Glob Environment Change. doi:10.1016/j.gloenvcha.2006.10.003 (accepted for publication)
  18. ECFandPIK (2004) What is dangerous climate change? Initial Results of a Symposium on Key Vulnerable Regions, Climate Change and Article 2 of the UNFCCC. European Climate Forum and Postdam Institute for Climate Impact Research. http://www.european-climate-forum.net/pdf/ECF_beijing_results.pdf
  19. Edmonds JA, Clarke J, Dooley J, Kim SH, Smith SJ (2004) Modelling greenhouse gas energy technology responses to climate change. Energy 29:1529–1536CrossRefGoogle Scholar
  20. Eickhout B, Den Elzen MGJ, Kreileman GJJ (2004) The Atmosphere–Ocean System of IMAGE 2.2. A global model approach for atmospheric concentrations, and climate and sea level projections. MNP Netherlands Environmental Assessment Agency, Bilthoven. www.mnp.nl/en
  21. EU (1996) Communication of the community strategy on climate change. Council of the EUGoogle Scholar
  22. EU (2005) Council of the European Union, Presidency conclusions, March 22–23. http://ue.eu.int/ueDocs/cms_Data/docs/pressData/en/ec/84335.pdf
  23. Gitz V, Ciais P (2004) Future expansion of agriculture and pasture acts to amplify atmospheric CO2 in response to fossil fuel and land-use change emissions. Clim Change 67:161–184CrossRefGoogle Scholar
  24. Graveland C, Bouwman AF, de Vries HJM, Eickhout B, Strengers BJ (2002) Projections of multi-gas emissions and carbon sinks, and marginal abatement cost functions modelling for land-use related sources. MNP Netherlands Environmental Assessment Agency, Bilthoven. www.mnp.nl/en
  25. Ha-Duong M, Grubb MJ, Hourcade JC (1997) Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement. Nature 390(6657):270–273CrossRefGoogle Scholar
  26. Hammitt JK, Lempert RJ, Schlesinger ME (1992) A sequential-decision strategy for abating climate change. Nature 357:315CrossRefGoogle Scholar
  27. Hansen J, Sato M, Ruedy R, Lacis A, Oinas V (2000) Global warming in the twenty-first century: an alternative scenario. PNAS 97(18):9875–9880CrossRefGoogle Scholar
  28. Hare WL, Meinshausen M (2004) How much warming are we committed to and how much can be avoided? Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany. http://www.pik-potsdam.de/publications/pik_reports
  29. Hendriks C, Graus W, van Bergen F (2002) Global carbon dioxide storage potential and costs. Ecofys, UtrechtGoogle Scholar
  30. Hendriks C, Harmelink M, Burges K, Ransel K (2004) Power and heat productions: plant developments and grid losses. Ecofys, UtrechtGoogle Scholar
  31. Hijioka Y, Masui T, Takahashi K, Matsuoka Y, Harasawa H (2006) Development of a support tool for greenhouse gas emissions control policy to help mitigate the impact of global warming. Environ Econ Policy Stud 7(3):331–347Google Scholar
  32. Hoogwijk M (2004) On the global and regional potential of renewable energy sources. PhD-thesis. Science, Technology and Society, Utrecht UniversityGoogle Scholar
  33. Hoogwijk M, de Vries HJM, Turkenburg WC (2004) Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econ 26:889–919CrossRefGoogle Scholar
  34. Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390Google Scholar
  35. Hourcade JC, Shukla P (2001) Global, regional and national costs and ancillary benefits of mitigation. In: Metz B, Davidson O, Swart R, Pan J (eds) Climate change 2001: mitigation. Cambridge Univ. Press, CambridgeGoogle Scholar
  36. IEA (2004a) CO2 capture and storage. International Energy Agency, ParisGoogle Scholar
  37. IEA (2004b) World energy outlook 2004. International Energy Agency, ParisGoogle Scholar
  38. IMAGE-team (2001a) The IMAGE 2.2 implementation of the SRES scenarios. A comprehensive analysis of emissions, climate change and impacts in the 21st century Bilthoven, The NetherlandsGoogle Scholar
  39. IMAGE-team (2001b) The IMAGE 2.2 implementation of the SRES scenarios. Climate change scenarios resulting from runs with several GCMs. Netherlands Environmental Assessment Agency (MNP), Bilthoven, The NetherlandsGoogle Scholar
  40. IPCC (2001) Climate change 2001 – synthesis report. Cambridge Univ. Press, CambridgeGoogle Scholar
  41. IPCC (2005) Special report on CO2 capture and storage. Cambridge Univ. Press, CambridgeGoogle Scholar
  42. Joos F, Bruno M, Fink R, Siegenthaler U, Stocker TF, Le Quéré C, Sarmiento JL (1996) An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus 48B:397–417Google Scholar
  43. Kaya (1989) Impacts of carbon dioxide emissions on GWP: interpretation of proposed scenarios. IPCC/Response Strategies Working Group, GenevaGoogle Scholar
  44. Leemans R, Eickhout BE (2004) Another reason for concern: regional and global impacts on ecosystems for different levels of climate change. Glob Environ Change 14:219–228CrossRefGoogle Scholar
  45. Leemans R, Eickhout B, Strengers BJ, Bouwman AF, Schaefer M (2002) The consequences for the terrestrial carbon cycle of uncertainties in land use, climate and vegetation responses in the IPCC SRES scenarios. Science China, Ser C 45:126–136Google Scholar
  46. Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (in press) Long-term reduction potential of non-CO2 greenhouse gases. Environ Sci Policy. doi:10.1016/j.envsci.2006.10.007
  47. Lucas PL, Den Elzen MGJ, van Vuuren DP (2005) A multi-gas abatement analysis of the Kyoto Protocol. Netherlands Environmental Assessment Agency (MNP), Bilthoven, The NetherlandsGoogle Scholar
  48. MA (2006) Ecosystems and human well-being: scenarios. Findings of the Scenarios Working Group. Island Press, WashingtonGoogle Scholar
  49. Manne AS, Richels R (2004) The impact of learning-by-doing on the timing and costs of CO2 abatement. Energy Econ 26:603–619CrossRefGoogle Scholar
  50. Mastandrea MD, Schneider SH (2004) Probabilistic integrated assessment of dangerous climate change. Science 304:571–574CrossRefGoogle Scholar
  51. Matthews BJH, van Ypersele JP (2003) UNFCCC Article 2, stabilisation and uncertainty: engaging citizens with a web-based climate model (http://www.chooseclimate.org/confpres/stabshiftuncert5.doc)Google Scholar
  52. Meinshausen M (2006) On the risk of overshooting 2 °C. In: Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  53. Meinshausen M, Hare B, Wigley TML, van Vuuren DP, den Elzen MGJ, Swart R (2006) Multi-gas emission pathways to meet climate targets. Clim Change 75(1–2):151–194CrossRefGoogle Scholar
  54. Metz B, van Vuuren DP (2006) How, and at what costs, can low-level stabilisation be achieved? – An overview. In Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change. Cambridge Univ. Press, CambridgeGoogle Scholar
  55. MIT (2003) The future of nuclear power – an interdisciplinary MIT study. Massachusetts Institute of Technology, Cambridge, USAGoogle Scholar
  56. MNP (2005) Limits to global warming. Netherlands Environmental Assessment Agency (MNP), BilthovenGoogle Scholar
  57. Morita T, Robinson J (2001) Greenhouse gas emission mitigation scenarios and implications. In: Metz B, Davidson O, Swart R, Pan J (eds) Climate change 2001: mitigation. Cambridge Univ. Press, CambridgeGoogle Scholar
  58. Morita T, Nakicenovic N, Robinson J (2000) Overview of mitigation scenarios for global climate stabilization based on new IPCC emission scenarios (SRES). Environ Econ Policy Stud 3:65–88Google Scholar
  59. Murphy J (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772CrossRefGoogle Scholar
  60. Nakicenovic N, Riahi K (2003) Model runs with MESSAGE in the context of the further development of the Kyoto Protocol. International Institute for Applied Systems AnalysisGoogle Scholar
  61. Nakicenovic et al. (2000a) Special Report on Emissions Scenarios (SRES). Cambridge Univ. Press, Cambridge, UKGoogle Scholar
  62. Nakicenovic N, Alcamo J, Davis G, De Vries B, Fenhamm J, Gaffin S, Gregory K, Gruebler A, Jung TY, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Van Rooyen S, Victor N, Zhou D (2000b) IPCC Special report on emissions scenarios. Cambridge Univ. Press, CambridgeGoogle Scholar
  63. NIES (2005) Emission scenario database. National Institute for Environmental Studies, JapanGoogle Scholar
  64. O’Neill BC, Oppenheimer M (2002) Climate change: dangerous climate impacts and the Kyoto Protocol. Science 296:1971–1972CrossRefGoogle Scholar
  65. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  66. Rao S, Riahi K (2006) The role of non-CO2 greenhouse gases in climate change mitigation: long-run scenarios for the 21st century. Energy J. Special IssueGoogle Scholar
  67. Richels RG, Manne AS, Wigley TML (2004) Moving beyond concentrations: the challenge of limiting temperature change. AEI-Brookings Joint Center, Washington, District of ColumbiaGoogle Scholar
  68. Rogner HH (1997) An assessment of world hydrocarbon resources. Annu Rev Energy Environ 22:217–262CrossRefGoogle Scholar
  69. Rosegrant MW, Cai X, Cline S (2002) World water and food to 2025: dealing with scarcity. International Food Policy Research Institute, Washington, District of ColumbiaGoogle Scholar
  70. Schlesinger ME, Malyshev S, Rozanov EV, Yang F, Andronova NG, de Vries HJM, Grübler A, Jiang K, Masui T, Morita T, Nakicenovic N, Penner J, Pepper W, Sankovski A, Zhang Y (2000) Geographical distributions of temperature change for scenarios of greenhouse gas and sulphur dioxide emissions. Technol Forecast Soc Change 65(167–193)Google Scholar
  71. Sims REH, Rogner HH, Gregory K (2003) Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy 31:1315–1326CrossRefGoogle Scholar
  72. Strengers BJ, Leemans R, Eickhout B, de Vries B, Bouwman AF (2004) The land use projections in the IPCC SRES scenarios as simulated by the IMAGE 2.2 model. GeoJournal 61(4):381–393CrossRefGoogle Scholar
  73. Strengers BJ, van Minnen J, Eickhout B (2007) The role of carbon plantations in mitigating climate change: potentials and costs. Clim Change (accepted for publication)Google Scholar
  74. Swart R, Mitchell J, Morita T, Raper S (2002) Stabilisation scenarios for climate impact assessment. Glob Environ Change 12(3):155–165CrossRefGoogle Scholar
  75. UN (2004) World population to 2300. United Nations, New YorkGoogle Scholar
  76. van Ruijven B, van Vuuren DP, de Vries B (2006) The potential role of hydrogen in energy systems with and without climate policy (in press)Google Scholar
  77. van Vuuren DP, O’Neill BC (2006) The consistency of IPCC’s SRES scenarios to 1990–2000 trends and recent projections. Clim Change 75(1–2):9–46CrossRefGoogle Scholar
  78. van Vuuren DP, den Elzen MG, Berk MM, Lucas PL, Eickhout B, Eerens H, Oostenrijk R (2003) Regional costs and benefits of alternative post-Kyoto climate regimes. Netherlands Environmental Assessment Agency (MNP), Bilthoven, The NetherlandsGoogle Scholar
  79. van Vuuren DP, de Vries HJM, Eickhout B, Kram T (2004) Responses to technology and taxes in a simulated world. Energy Econ 26(4):579–601CrossRefGoogle Scholar
  80. van Vuuren DP, Cofala J, Eerens HE, Oostenrijk R, Heyes C, Klimont Z, den Elzen MGJ, Amann M (2006a) Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe. Energy Policy 34(4):444–460CrossRefGoogle Scholar
  81. van Vuuren DP, Eickhout B, Lucas P, den Elzen MGJ (2006b) Long-term multi-gas scenarios to stabilise radiative forcing – exploring costs and benefits within an integrated assessment framework. Energy J. Special IssueGoogle Scholar
  82. van Vuuren DP, Weyant J, De la Chesnaye F (2006c) Multigas scenarios to stabilise radiative forcing. Energy Econ 28(1):102–120CrossRefGoogle Scholar
  83. Waterloo MJ, Spiertz PH, Diemont H, Emmer I, Aalders E, Wichink-Kruit R, Kabat P (2001) Criteria potentials and costs of forestry activities to sequester carbon within the framework of the clean development mechanism. Alterra Green World Research, Wageningen, The NetherlandsGoogle Scholar
  84. Weyant JP (2000) An introduction to the economics of climate change policy. Pew Center on Global Climate Change. Washington DCGoogle Scholar
  85. Weyant JP, De la Chesnaye FC, Blanford G (2006) Overview of EMF – 21: multigas mitigation and climate change. Energy J (in press)Google Scholar
  86. White-House (2002) Executive summary of Bush climate change initiative (http://www.whitehouse.gov/news/releases/2002/02/climatechange.html)Google Scholar
  87. Wigley TML (1991) Coud reducing fossil-fuel emissions cause global warming. Nature 349:503–506CrossRefGoogle Scholar
  88. Wigley TML (2003) Modelling climate change under no-policy and policy emissions pathways. Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  89. Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293:451–454CrossRefGoogle Scholar
  90. Wigley TML, Richels R, Edmonds JA (1996) Economic and environmental choices in stabilisation of atmospheric CO2 concentrations. Nature 369:240–243CrossRefGoogle Scholar
  91. Yohe G, Andronova N, Schlesinger M (2004) To hedge or not to hedge against an uncertain climate future? Science 306:416–417CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Detlef P. van Vuuren
    • 1
  • Michel G. J. den Elzen
    • 1
  • Paul L. Lucas
    • 1
  • Bas Eickhout
    • 1
  • Bart J. Strengers
    • 1
  • Bas van Ruijven
    • 1
  • Steven Wonink
    • 1
  • Roy van Houdt
    • 1
  1. 1.Netherlands Environmental Assessment Agency (MNP)BilthovenThe Netherlands

Personalised recommendations