Climatic Change

, Volume 79, Issue 1–2, pp 79–102 | Cite as

Climate Risks and Their Impact on Agriculture and Forests in Switzerland

  • J. Fuhrer
  • M. Beniston
  • A. Fischlin
  • Ch. Frei
  • S. Goyette
  • K. Jasper
  • Ch. Pfister
Original Article


There is growing evidence that, as a result of global climate change, some of the most severe weather events could become more frequent in Europe over the next 50 to 100 years. The paper aims to (i) describe observed trends and scenarios for summer heat waves, windstorms and heavy precipitation, based on results from simulations with global circulation models, regional climate models, and other downscaling procedures, and (ii) discuss potential impacts on agricultural systems and forests in Switzerland. Trends and scenarios project more frequent heavy precipitation during winter corresponding, for example, to a three-fold increase in the exceedance of today's 15-year extreme values by the end of the 21st century. This increases the risk of large-scale flooding and loss of topsoil due to erosion. In contrast, constraints in agricultural practice due to waterlogged soils may become less in a warmer climate. In summer, the most remarkable trend is a decrease in the frequency of wet days, and shorter return times of heat waves and droughts. This increases the risk of losses of crop yield and forage quality. In forests, the more frequent occurrence of dry years may accelerate the replacement of sensitive tree species and reduce carbon stocks, and the projected slight increase in the frequency of extreme storms by the end of the century could increase the risk of windthrow. Some possible measures to maintain goods and services of agricultural and forest ecosystems are mentioned, but it is suggested that more frequent extremes may have more severe consequences than progressive changes in means. In order to effectively decrease the risk for social and economic impacts, long-term adaptive strategies in agriculture and silviculture, investments for prevention, and new insurance concepts seem necessary.


Agriculture Climate change Extreme events Forests Society Switzerland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandersson H, Tuomenvirta H, Schmith T, Iden K (2000) Trends of storms in NW Europe derived from an updated pressure data set. Clim Res 14:71–73Google Scholar
  2. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232CrossRefGoogle Scholar
  3. Beniston M (2004a) The 2003 heat wave in Europe. A shape of things to come? Geophys Res Lett 31:2022–2026CrossRefGoogle Scholar
  4. Beniston M (2004b) Climatic change and its impacts – an overview focusing on Switzerland. Advances in global change research, vol. 19. Kluwer Academic Publisher, Dordrecht, p 297Google Scholar
  5. Beniston M, Stephenson DB (2004) Extreme climatic events and their evolution in a changing climatic conditions. Global Planet Change 44:1–9CrossRefGoogle Scholar
  6. Brassel P, Brändli UB (eds) (1999) Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Birmensdorf and Bundesamt für Umwelt, Wald und Landschaft, Bern, Verlag Haupt, Bern, Switzerland, p 442Google Scholar
  7. Braun S, Schindler C, Volz R, Flückiger W (2003) Forest damages by the storm Lothar’ in permanent observation plots in Switzerland: the significance of soil acidification and nitrogen deposition. Water Air Soil Pollut 142:327–340CrossRefGoogle Scholar
  8. Buffoni L, Maugeri M, Nanni T (1999) Precipitation in Italy from 1833 to 1996. Theor Appl Climatol 63:33–40CrossRefGoogle Scholar
  9. Bugmann HKM (1996) A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074CrossRefGoogle Scholar
  10. Bush, MB, Silman MR, Urrego DH (2004) 48,000 years of climate and forest change in a biodiversity hot spot. Science 303:827–829CrossRefGoogle Scholar
  11. BUWAL (2005) Lothar – Ursächliche Zusammenhänge und Risikoentwicklung. Umwelt-Materialien Nr. 184, Swiss Federal Office of Environment, Forest and Landscape, Bern, Switzerland, p 145Google Scholar
  12. Calanca PL (2004) Interannual variability of summer mean soil moisture conditions in Switzerland during the 20th century: a look using a stochastic soil moisture model. Water Resour Res 40, doi: 10.1029/2004WR003254Google Scholar
  13. Calanca, P. L.: (2006), Climate change and drought occurrence in the Alpine region: How severe are becoming extremes?’, Global Planetary Change, in pressGoogle Scholar
  14. Calanca, P. L. and Fuhrer, J.: (2005), Swiss agriculture in a changing climate: Grassland production and its economic value’, in Haurie, A. and Viguier, L. (eds.), The Coupling of Climate and Economic Dynamics-Essays on Integrated Assessment, Advances in Global Change Research, vol. 22. Springer, Dordrecht, NL, pp. 341–353Google Scholar
  15. Calanca PL, Roesch A, Jasper K, Wild M (2006), Global warming and the summertime evapotranspiration regime of the Alpine region. Clim Change, (this issue) DOI 10.1007/s10584-006-9103-9Google Scholar
  16. Carnell RE, Senior, CA (1998) Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Clim Dyn 14:369–383CrossRefGoogle Scholar
  17. Caya D, Laprise R (1999) A semi-implicit semi Lagrangian regional climate model: the Canadian RCM. Mon. Weather Rev 127:341–362CrossRefGoogle Scholar
  18. Christensen JH, Carter TR, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. EOS 83:147Google Scholar
  19. Christensen JH, Christensen OB (2003) Severe summertime flooding in Europe. Nature 421:805–806CrossRefGoogle Scholar
  20. Christensen OB, Christensen JH, Machenhauer B, Botzet, M (1998) Very high-resolution regional climate simulations over Scandinavia – Present climate. J Clim 11:3204–3229CrossRefGoogle Scholar
  21. Ciais Ph, Ciais Reichstein M, Viovy N, Granier A Ogée J, Allard V, Buchmann N, Aubinet M, Bernhofer Chr, Carrara A, Chevallier F, De Noblet D, Friend A, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED Vesala T, Valentini R (2005) European-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529– 533CrossRefGoogle Scholar
  22. Dale, VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51:723–734CrossRefGoogle Scholar
  23. Dobbertin M, Seifert H, Schwyzer A (2002) Standort und Bestandesaufbau waren mitentscheidend für das Ausmass der Sturmschäden. Wald und Holz 83:39–42Google Scholar
  24. Dorland C, Tol RSJ, Palutikov JP (1999) Vulnerability of the Netherlands and Northwest Europe to storm damage under climate change. Clim Change 43:513–535CrossRefGoogle Scholar
  25. Durman CF, Gregory JM, Hassell DC, Jones RG, Murphy JM (2001) A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Quat J Roy Meteorol Soc 127:1005–1015CrossRefGoogle Scholar
  26. Esteban-Parra MJ, Rodrigo FS, Castro-Diez Y (1998) Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int J Climatol 18:1557–1574CrossRefGoogle Scholar
  27. FAT (1996) Wetterrisiko und verfügbare Feldarbeitstage in der Schweiz. FAT-Berichte 490: Swiss Federal Research Station for Agricultural Economy and Engineering, Tänikon, Switzerland, p 5Google Scholar
  28. Fischlin A (1997) Biospheric feedbacks in the global climate system. J Environ Qual 26:2CrossRefGoogle Scholar
  29. Fischlin A, Bugmann H, Gyalistras D (1995) Sensitivity of a forest ecosystem model to climate parameterization schemes. Environ Pollut 87:267–282CrossRefGoogle Scholar
  30. Fischlin A, Gyalistras D (1997) Assessing impacts of climatic change on forests in the Alps. Global Ecol Biogeogr Lett 6:19–37CrossRefGoogle Scholar
  31. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4124, doi: 10.1029/2002JD002287CrossRefGoogle Scholar
  32. Frei C, Davies HC, Gurtz J, Schär C (2001) Climate dynamics and extreme precipitation and flood events in Central Europe. Integr Assessm 1:281–299CrossRefGoogle Scholar
  33. Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900CrossRefGoogle Scholar
  34. Frei C, Schär C (2001) Detection probability of trends in rare events: theory and application to heavy precipitation in the Alpine region. J Clim 14:1568–1584CrossRefGoogle Scholar
  35. Frei C, Schöll R, Schmidli J, Fukutome S, Vidale PL (2006) Future change of precipitation extremes in Europe: an intercomparison of scenarios from regional climate models. J Geophys Res, 111, D06105, doi: 10.1029/2005JD005965Google Scholar
  36. Giorgi F, Hewitson B, et al. (2001) Regional climate information – evaluation and projections. In: Climate change 2001. The scientific basis. The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), pp 581–638Google Scholar
  37. Goyette S, Beniston M, Caya D, Laprise JPR, Jungo P (2001) Numerical investigation of an extreme storm with the Canadian Regional Climate Model: the case study of windstorm VIVIAN’, Switzerland, February 27, 1990. Clim Dyn 18:145–178CrossRefGoogle Scholar
  38. Goyette S, Brasseur O, Beniston M (2003) Application of a new wind gust parameterisation. Multi-scale case studies performed with the Canadian RCM. J Geophys Res 108:4374–4390CrossRefGoogle Scholar
  39. Grebner D, Roesch T (1999) Zusammenhänge und Beurteilung der Hochwasserperiode in der Schweiz vom 11. bis 15. Mai 1999. Wasser, Energie, Luft 5/6:127–132Google Scholar
  40. Grime JP, Willis AJ, Hunt R, Dunnett NP (1994) Climate-vegetation relationships in the Bibury road verge experiments. In: Leigh RA, Johnston AE (eds) Long-term experiments in agricultural and ecological sciences. CAB International, Wallingford, UK, pp 271–285Google Scholar
  41. Grimm M, Jones RJA, Montanarella L (2002) Soil Erosion Risk in Europe. Report EUR 19939 EN, Office for Official Publications of the European Communities. Luxemburg, p 40Google Scholar
  42. Gyalistras D (1997) Projecting scenarios of climatic change and future weather for ecosystem models: derivation of methods and their application to forests in the Alps. PhD Dissertation ETH No. 12065, Swiss Federal Institute of Technology: Zürich, Switzerland, p 103Google Scholar
  43. Gyalistras D (2003) Development and validation of a high-resolution monthly gridded temperature and precipitation data set for Switzerland (1951–2000). Clim Res 25:55–83Google Scholar
  44. Gyalistras D, Fischlin A (1999) Towards a general method to construct regional climatic scenarios for model-based impacts assessments. Petermanns Geogr Mitt 143:251–264Google Scholar
  45. Gyalistras D, Fischlin A, Riedo M (1997) Herleitung stündlicher Wetterszenarien unter zukünftigen Klimabedingungen. In: Fuhrer J (ed), Klimaänderung und Grünland, Vdf Hochschulverlag AG and der ETH Zurich, Zurich, pp 207–276Google Scholar
  46. Gyalistras D, von Storch H, Fischlin A, Beniston M (1994) Linking GCM-simulated climatic changes to ecosystem models: case studies of statistical downscaling in the Alps. Clim Res 4:167–189Google Scholar
  47. Hall NMJ, Hoskins BJP, Valdes J, Senior CA (1994) Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart J Roy Meteor Soc 120:1209–1230CrossRefGoogle Scholar
  48. Hanssen-Bauer I, Forland EJ (2000) Long-term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? Clim Res 10:143–153Google Scholar
  49. Hanson CE, Palutikov JP, Davies TD (2004) Objective cyclone climatologies of the North Atlantic-a comparison between the ECMWF and NCEP reanalyses. Clim Dyn 22:757–769CrossRefGoogle Scholar
  50. Haylock MR, Goodess CM (2004) Interannual variability of extreme European winter rainfall and links with mean large-scale circulation. Int J Climatol 24:759–776CrossRefGoogle Scholar
  51. Heino R, Brázdil R, F/O rland E, Tuomenvirta H, Alexandersson H, Beniston M, Held C, IM (1999) Large-scale dynamics and global warming. Bull Amer Meteor Soc 74:228–241Google Scholar
  52. Houghton JT, Meira Filho LG, Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K (eds) (1995) Climate change 1994: Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Reports of Working Groups I and III of the Intergovernmental Panel on Climate Change (IPCC), forming part of the IPPC Special Report to the first session of the Conference of the Parties to the UN Framework Convention on Climate Change. Cambridge University Press, Cambridge, p 339Google Scholar
  53. Huntingford C, Jones RG, Prudhomme C, Lamb R, Gash HHC, Jones DA (2003) Regional climate-model predictions of extreme rainfall for a changing climate. Quart J Roy Meteorol Soc 129:1607–1621CrossRefGoogle Scholar
  54. IPCC (2001) In: Houghton JT, Ding DJ, Griggs DJ, Noguer M, van der Linden PJ, Xiasou D (eds), Climate change 2001. The scientific basis. Cambridge University Press, Cambridge and New York, p 944Google Scholar
  55. Jasper K, Calanca PL, Gyalistras D, Fuhrer J (2004) Differential impacts of climate change on the hydrology of two alpine river basis. Clim Res 26:113–129Google Scholar
  56. Jasper K, Calanca PL, Fuhrer J (2006) Changes in summertime soil water patterns in complex terrain due to climatic change. J Hydrology, 327, 550–563Google Scholar
  57. Jones R, Murphy J Hassell D, Taylor R (2001) Ensemble mean changes in a simulation of the European climate of 2071–2100, using the new Hadley Centre regional climate modelling system HadAM3H/HadRM3H. Hadley Centre Report 2001, available from (accessed 10/06/2005)Google Scholar
  58. Jungo P, Goyette S, Beniston M (2002) Daily wind gust speed probabilities over Switzerland according to three types of synoptic circulation. Int J Climatol 22:485–499CrossRefGoogle Scholar
  59. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne Roy, Joseph Dennis (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 77:437–472CrossRefGoogle Scholar
  60. Keller F, Fuhrer J (2004) Landwirtschaft im Hitzesommer 2003. Swiss Agric Res 11:403–410Google Scholar
  61. Keller F, Lischke H, Mathis T, Möhl A, Wick L, Ammann B, Kienast F (2002) Effects of climate, fire, and humans on forest dynamics: forest simulations compared to the paleological record. Ecol Model 152:109–127CrossRefGoogle Scholar
  62. Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. J Clim 16:3665–3680CrossRefGoogle Scholar
  63. Kleinn J (2002) Climate change and runoff statistics in the Rhine Basin: a process study with a coupled climate-runoff model’, Doctor of Natural Sciences Thesis Dissertation No. 14663, Swiss Federal Institute of Technology, Zurich, p 114Google Scholar
  64. Kleinn J, Frei C, Gurtz J, Lüthi D, Vidale PL, Schär C (2005) Hydrological simulations in the Rhine basin, driven by a regional climate model. J Geophys Res 110:D04102, doi: 10.1029/2004JD005143Google Scholar
  65. Knippertz P, Ulbrich U, Speth P (2000) Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment. Clim Res 15:109–122Google Scholar
  66. Kuboyama H, Oka H (2000) Climate risks and age-related damage probabilities – effects on the economically optimal rotation length for forest stand management in Japan. Silva Fenn 34:155–166Google Scholar
  67. Lambert S, Sheng J, Boyle J (2002) Winter cyclone frequencies in thirteen models participating in the Atmospheric Model Intercomparison Project (AMIP 1). Clim Dyn 19:1–16CrossRefGoogle Scholar
  68. Leckebusch GC, Ulbrich U (2004) On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global Planet Change 44:181–193CrossRefGoogle Scholar
  69. Leuzinger S, Zotz G, Asshoff R, Körner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25:641–650Google Scholar
  70. Lischke H, Guisan A, Fischlin A, Williams J, Bugmann H (1998) Vegetation responses to climate change in the Alps: modeling studies. In: Cebon P, Dahinden U, Davies HC, Imboden DM, Jäger CC (eds), Views from the Alps: regional perspectives on climate change. MIT Press, Boston, Massachusetts, pp 309–350Google Scholar
  71. Lüscher A, Fuhrer J, Newton PCD (2005) Global atmospheric change and its effect on managed grassland systems. In: McGolloway DC (ed), Grassland – a global resource. Wageningen Academic Publishers, pp 251–264Google Scholar
  72. LWF (2004) Waldzustandsbericht 2004. Bayrisches Staatsministerium für Landwirtschaft und Forsten. (accessed 10/06/2005)Google Scholar
  73. Mäder J (1999) Effekte externer Störungen auf den Sukzessionslauf subalpiner Wälder: Modellierung und Analyse. Master of Environmental Sciences Thesis, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, p 62Google Scholar
  74. Mayer H (1989) Windthrow. Phil Trans R Soc Lond B 324:267–181Google Scholar
  75. McCabe G J, Clark MP, Serreze M (2001) Trends in northern hemisphere surface cyclone frequency and intensity. J Clim 14:2763–2768CrossRefGoogle Scholar
  76. McCallum E, Norris WJT (1990) The storms of January and February 1990. Meteorol Mag 119:201–210Google Scholar
  77. Mearns LO, Giorgi F, Whetton P, Pabon D, Hulme M, Lal M (2003) Guidelines for use of climate scenarios developed from Regional Climate Model experiments. Technical Report. The IPCC Data Distribution Centre, Norwich, UK, p 38Google Scholar
  78. Meehl GA, Karl T, Easterling DR, Changnon S, Pielke R, Changnon D, Evans J, Groisman PY, Knutson TR, Kunkel KE, Mearns LO, Parmesan C, Pulwarty R, Root T, Sylves RT, Whetton P, Zwiers F (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Soc Meteorol 81:413– 416CrossRefGoogle Scholar
  79. Nakićenović N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge and New York, p 599Google Scholar
  80. Noguer M, Jones RG, Murphy JM (1998) Sources of systematic errors in the climatology of a regional climate model over Europe. Clim Dyn 14:691–712CrossRefGoogle Scholar
  81. OcCC (2003) Extremereignisse und Klimaänderung, Organe Consultatif sur lse Changements climatiques, Bern, Switzerland, p 88Google Scholar
  82. Osborn TJ, Hulme M, Jones PD, TA Basnett (2000) Observed trends in the daily intensity of United Kingdom precipitation. Int J Climatol 20:347–364CrossRefGoogle Scholar
  83. Ott W, Baur M (2005) Der monetäre Erholungswert des Waldes, Umwelt-Materialien Nr. 193, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern, Switzerland, p 68Google Scholar
  84. Pal JS, Giorgi F, Bi X (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31:L13202, doi: 10.1029/2004GL019836CrossRefGoogle Scholar
  85. Palutikof JP, Brabson BB, Lister DH, Adcock ST (1999) A review of methods to calculate extreme wind speeds. Meteor Appl 6:119–132CrossRefGoogle Scholar
  86. Parmesan C, Root TL, Willing MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Soc Meteorol 81:443–449CrossRefGoogle Scholar
  87. Parry ML (ed) (2000) Assessment of potential effects and adaptation for climate change in Europe: the Europe ACACIA project. Jackson Environment Institute, University of East Anglia, Norwich, UK, p 320Google Scholar
  88. Perruchoud D, Joos F, Fischlin A, Hajdas I, Bonani G (1999) Evaluating time scales of carbon turnover in temperate forest soils with radiocarbon data. Global Biogeochem. Cycle 13:555–573CrossRefGoogle Scholar
  89. Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995. Verlag Paul Haupt, Bern, p 304Google Scholar
  90. Pfister C (2004) Von Goldau nach Gondo. Naturkatastrophen als identitätsstiftende Ereignisse in der Schweiz des 19. Jahrhunderts. In: Pfister C, Summermatter S (eds) Katastrophen und ihre Bewältigung. Perspektiven und Positionen. Paul Haupt, Bern, Switzerland, pp 53–78Google Scholar
  91. Pope DV, Gallani M, Rowntree R, Stratton A (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146CrossRefGoogle Scholar
  92. Pruski FF, Nearing MA (2002) Runoff and soil-loss responses to changes in precipitation: a computer simulation study. J Soil Water Conserv 57:7–16Google Scholar
  93. Räisänen J, Hannson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: regional simulations with two global models and two forcing scenarios. Clim Dyn 22:13–31CrossRefGoogle Scholar
  94. Rebetez M, Dobberin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9CrossRefGoogle Scholar
  95. Reinhard M, Rebetez M, Schlaepfer R (2005) Recent climate change: Rethinking drought in the context of forest fire research in Ticino, South of Switzerland. Theor Appl Climatol, DOI 10.1007/s00704–005-0123-6Google Scholar
  96. Riedo M, Gyalistras D, Fischlin A, Fuhrer J (1999) Using an ecosystem model linked to GCM-derived local weather scenarios to analyze effects of climate change and elevated CO2 on dry matter production and partitioning, and water use in temperate managed grasslands. Global Change Biol 5:213– 223CrossRefGoogle Scholar
  97. Rosenzweig C, Tubiello FN, Goldberg R, Mills E, Bloomfield J (2002) Increased crop damage in the US from excess precipitation under climate change. Global Environ Change 12:197–202CrossRefGoogle Scholar
  98. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger M, Appenzeller C (2004) The role of increasing temperature variability in European summer heat waves. Nature 427:332–336CrossRefGoogle Scholar
  99. Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biol 9:1620–1633CrossRefGoogle Scholar
  100. Schmidli J, Frei C (2005) Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int J Climatol 25:753–771CrossRefGoogle Scholar
  101. Schmidli J, Schmutz C, Frei C, Wanner H, Schär C (2002) Mesoscale precipitation in the Alps during the 20th century. Int J Climatol 22:1049–1074CrossRefGoogle Scholar
  102. Schmidtke H, Scherrer HU (1997) Sturmschäden im Wald. vdf Hochschulverlag AG an der ETH Zürich, Zurich, p 38Google Scholar
  103. Schmith T (2000) Global warming signature in observed winter precipitation in Northwestern Europe. Clim Res 17:263–274Google Scholar
  104. Schmith T, Kaas E, Li T-S (1998) Northeast Atlantic winter storminess 1875–1995 re-analysed. Clim Dyn 14:529–536CrossRefGoogle Scholar
  105. Schönenberger W (2001) Trends in mountain forest management in Switzerland. Schweiz Z Forstwes 152:152–156Google Scholar
  106. Schönwiese C-DJ, Rapp T Fuchs, M Denhard (1994) Observed climate trends in Europe 1891–1990. Meteorol Zeitschrift N.F.3:22–28Google Scholar
  107. Schorer M (1992) Extreme Trockensommer in der Schweiz und ihre Folgen für Natur und Wirtschaft. Geographica Bernensia G 40, Institute of Geography, University of Bern, p 192Google Scholar
  108. Schubert M, Perlwitz J, Blender R, Fraedrich K, Lunkeit F (1998) North Atlantic cyclones in CO2-induced warm climate simulations: frequency, intensity, and tracks. Clim Dyn 14:827–837CrossRefGoogle Scholar
  109. Schüepp M, Schiesser HH, Huntrieser H, Scherrer HU, Schmidtke H (1994) The winterstorm VIVIAN’ of 27 February 1990: about the meteorological development, wind forces and damage situation in the forests of Switzerland. Theor Appl Climatol 49:183–200CrossRefGoogle Scholar
  110. Schulla J (1997) Hydrologische Modellierung von Flussgebieten zur Abschätzung der Folgen von Klimaänderungen, Zürcher Geographische Schriften 69: Swiss Federal Institute of Technology (ETH), Zürich, p 187Google Scholar
  111. Stampfli A, Zeiter M (2004) Plant regeneration directs changes in grassland composition after extreme drought: a 13-year study in southern Switzerland. J Ecol 92:568–576CrossRefGoogle Scholar
  112. Stephenson DB, Held IM (1993) GCM response of Northern winter stationary waves and storm tracks to increasing amounts of carbon dioxide. J Clim 6:1859–1870CrossRefGoogle Scholar
  113. Swiss Federal Office of Agriculture (2003) Agrarbericht 2003. Bern, SwitzerlandGoogle Scholar
  114. Thürig E, Palosuo T, Bucher J, Kaufmann E (2005) The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. Forest Ecol Manage 210:337–350CrossRefGoogle Scholar
  115. Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42:327–339CrossRefGoogle Scholar
  116. UN/ECE Timber Committee (2000) Forest Products Annual Market Review 1999–2000. Timber Bulletin, Vol. LIII, ECE/TIM/BULL/53/3, United Nations, Geneva, Switzerland, p 228Google Scholar
  117. Valleron A-J, Boumendil A (2004) Epidemillionlogy and heat waves: analysis of the 2003 episode in France. Compt Rend Biol 327:1125–1141CrossRefGoogle Scholar
  118. Vidale PL, Lüthi D, Frei C, Seneviratne S, Schär C (2003) Predictability and uncertainty in a Regional Climate Model. J Geophys Res 108(D18):4586, doi: 10.1029/2002JD002810CrossRefGoogle Scholar
  119. WASA Group (1998) Changing waves and storms in the north-east Atlantic? Bull Am Meteorol Soc 79:741–760CrossRefGoogle Scholar
  120. Wermelinger B, Seifert M (1999) Temperature-dependent reproduction of the spruce bark beetle Ips typographus, and analysis of the potential population growth. Ecol Entomol 24:103–110CrossRefGoogle Scholar
  121. Wernli H, Dirren S, Liniger M A, Zillig M (2002) Dynamical aspects of the life cycle of the winter storm Lothar’ (24–26 December 1999). Quart J Roy Meteor Soc 128:405–429CrossRefGoogle Scholar
  122. Widmer O, Said S, Miroir J, Duncan P, Gaillard JM, Klein F (2004) The effects of hurricane Lothar’ on habitat use of roe deer. For Ecol Manage 195:237–242CrossRefGoogle Scholar
  123. Widmann M, Schär C (1997) A principal component and long-term trend analysis of daily precipitation in Switzerland. Int J Climatol 17:1333–1356CrossRefGoogle Scholar
  124. Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. Technical Report. The IPCC Data Distribution Centre, Norwich, UK, p 27Google Scholar
  125. Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34:2995–3008CrossRefGoogle Scholar
  126. Williams AN, Nearing M, Habeck M, Southworth J, Pfeifer R, Doering OC, Lowenberg-Deboer J, Randolph JC, Mazzocc MA (2001) Global climate change: implications of extreme events for soil conservation strategies and crop production in the midwestern United States. In: Stott DE, Mohtar RH, Steinhardt GC (eds), Sustaining the global farm. Proceedings of the 10th International Soil Conservation Organization Meeting, Purdue University, West Lafayette, pp 509–515Google Scholar
  127. WSL/BUWAL (1999) Lothar. Der Orkan (1999) Ereignisanalyse. Eidg. Forschungsanstalt WSL und Bundesamt für Umwelt, Wald und Landschaft BUWAL (Hrsg.), 2001, Birmensdorf, Bern, p 391Google Scholar
  128. Xoplaki E, Gonzalez-Rouco JF, Luterbacher J Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78CrossRefGoogle Scholar
  129. Xoplaki E, Luterbacher J, Burkard R, Patrikas I, Maheras P (2000) Connection between the large-scale 500,hPa geopotential height fields and precipitation over Greece during wintertime. Clim Res 14:129–146Google Scholar
  130. Zhang X-C, Nearing MA, Garbrecht JD, Steiner JL (2004) Downscaling monthly forecasts to simulate impacts of climate change on soil erosion and wheat production. Soil Sci Soc Am J 68:1376–1385CrossRefGoogle Scholar
  131. Zwiers FW, Kharin VV (1998) Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J Clim 11:2200–2222CrossRefGoogle Scholar
  132. Zierl B (2004) A simulation study to analyse the relations between crown condition and drought in Switzerland. For Ecol Manage 188:25–38CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • J. Fuhrer
    • 1
  • M. Beniston
    • 2
  • A. Fischlin
    • 3
  • Ch. Frei
    • 4
  • S. Goyette
    • 2
  • K. Jasper
    • 1
  • Ch. Pfister
    • 5
  1. 1.Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and AgricultureAir Pollution/Climate GroupZurichSwitzerland
  2. 2.Department of GeosciencesUniversity of FribourgFribourgSwitzerland
  3. 3.Department of Environmental Sciences, Institute of Terrestrial EcologySwiss Federal Institute of Technology ETHZSchlieren/ZurichSwitzerland
  4. 4.Department of Environmental Sciences, Institute for Atmospheric and Climate ScienceSwiss Federal Institute of Technology ETHZZurichSwitzerland
  5. 5.Institute of HistoryUniversity of BernBernSwitzerland

Personalised recommendations