Advertisement

Climatic Change

, Volume 77, Issue 3–4, pp 249–278 | Cite as

Emissions, Concentrations, & Temperature: A Time Series Analysis

  • Robert K. Kaufmann
  • Heikki Kauppi
  • James H. Stock
Open Access
Article

Abstract

We use recent advances in time series econometrics to estimate the relation among emissions of CO2 and CH4, the concentration of these gases, and global surface temperature. These models are estimated and specified to answer two questions; (1) does human activity affect global surface temperature and; (2) does global surface temperature affect the atmospheric concentration of carbon dioxide and/or methane. Regression results provide direct evidence for a statistically meaningful relation between radiative forcing and global surface temperature. A simple model based on these results indicates that greenhouse gases and anthropogenic sulfur emissions are largely responsible for the change in temperature over the last 130 years. The regression results also indicate that increases in surface temperature since 1870 have changed the flow of carbon dioxide to and from the atmosphere in a way that increases its atmospheric concentration. Finally, the regression results for methane hint that higher temperatures may increase its atmospheric concentration, but this effect is not estimated precisely.

Keywords

Ordinary Little Square Instrumental Variable Time Series Analysis Atmospheric Concentration Stochastic Trend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albritton, D. L. and Meira Filho, L. G.: 2001, ‘Technical summary’, in: Houghton et al. (eds.), Climate Change 2001: The Scientific Basis. Cambridge University Press, New York.Google Scholar
  2. Allen, R. J., Nicholls, N., Jones, P. D. and Butterworth, I. J.: 1991, ‘A further extension of the Tahiti-Darwin SOI, early SOI results and Darwin pressure’, J. Clim. 4, 743–749.CrossRefADSGoogle Scholar
  3. Anderson, T. W.: 2005, ‘Origins of the limited information maximum likelihood and two-stage least sqaure estimators’, J. Econ. 12(1), 1–16.zbMATHGoogle Scholar
  4. Anderson, T. W. and Rubin, H.: 1949, ‘Estimation of the parameters of a single equation in a complete system of stochastic equations’, Annal. Math. Stat. 20, 46–63.zbMATHMathSciNetGoogle Scholar
  5. Andronova, N. G. and Schlesinger, M. E.: 2000, ‘Causes of global temperature changes during the 19th and 20th century’, Geophys. Res. Lett. 27, 2137–2140.CrossRefADSGoogle Scholar
  6. Angell, J. K.: 1988, ‘Impact of El Niño on the delineation of tropospheric cooling due to volcanic eruptions’, J. Geophys. Res. 93, 3697–3704.ADSGoogle Scholar
  7. A. S. L. and Associates, Sulfur Emissions By Country And Year, Report No: DE96014790, US Department of Energy, Washington DC, 1997.Google Scholar
  8. Bacastow, R. B.: 1976, ‘Modulation of atmospheric carbon dioxide by the southern oscillation’, Nature 261, 116–118.CrossRefADSGoogle Scholar
  9. Craig, S., Holmen, K., and Bjorkstrom, A.: 1997, ‘Net terrestrial carbon exchange from mass balance calculations: an uncertainty estimate’, Tellus 49B, 136–148.ADSGoogle Scholar
  10. Cubash, U. and Meehl, G. A.: 2001, Projections of future climate change, in: Houghton et al. (eds.), Climate Change 2001: The Scientific Basis. Cambridge University Press, New York.Google Scholar
  11. Dickey, D. A. and Fuller, W. A.: 1979, ‘Distribution of the estimators for autoregressive time series with a unit root’, J. Am. Stat. Assoc. 74, 427–431.zbMATHMathSciNetCrossRefGoogle Scholar
  12. Dettinger, M. D. and Ghil, M.: 1998, ‘Seasonal and interannual variations of atmospheric CO2 and climate’, Tellus 50B, 1–24.ADSGoogle Scholar
  13. Dlugokencky, E. J., Lang, P. M., Masarie, K. A. and Steele, L. P.: 1994, ‘Global CH4 record from the NOAA/CMDL air sampling network’, in: Boden, T. A., Kaiser, D. P., Sepanski, R. J., and Stoss, F. S. (eds.), Trends ’93: A Compendium of Data on Global Change, ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge TN, pp. 262–266.Google Scholar
  14. Ehhalt, D. and Prather, M.: 2001, ‘Atmospheric chemistry and greenhouse gases’, in: Houghton et al. (eds.), Climate Change 2001: The Scientific Basis. Cambridge University Press, New York.Google Scholar
  15. Elkins, J. W., et al.: 1994, ‘Global and hemispheric means of CFC-11 and CFC-12 from the NOAA/CMDL flask sampling program’, in: Boden, T. A., Kaiser, D. P., Sepanski, R. J. and Stoss, F. S. (eds.), Trends ’93: A Compendium of Data on Global Change, ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge TN, pp. 501–504.Google Scholar
  16. Engle, R. F. and Granger, C. W. J.: 1987, ‘Co-integration and error correction: Representation, estimation, and testing’, Econometrica 55, 251–276.zbMATHMathSciNetCrossRefGoogle Scholar
  17. Etheridge D. M., Pearman, G. I., and Fraser, P. J.: 1994, ‘Historical CH4 record from the “DE08” ice core at Law Dome”, in: Boden, T. A., Kaiser, D. P., Sepanski, R. J., and Stoss, F. S. (eds.), Trends ’93: A Compendium of Data on Global Change, ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge TN, pp. 256–260.Google Scholar
  18. Etheridge, D. M., Steele, L. P., Langenfelds, L. P., and Francey, R. J.: 1996, ‘Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn’, J. Geophys. Res. 101, 4115–4128.CrossRefADSGoogle Scholar
  19. Folland, C. K., et al.: 1992, ‘Observed climate variability and change’, in: Houghton, J. T., Callander, B. A. and Varney, S. K. (eds.), Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge.Google Scholar
  20. Francey, R. J., et al.: 1995, ‘Changes in oceanic and terrestrial carbon uptake since 1982’, Nature 373, 326–330.CrossRefADSGoogle Scholar
  21. Friedli, H., et al.: 1986, ‘Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries’, Nature 324, 237–238.CrossRefADSGoogle Scholar
  22. Goulden, et al.: 1998, ‘Sensitivity of boreal forest carbon balance to soil thaw’, Science 279, 214–217.PubMedCrossRefADSGoogle Scholar
  23. Graham, E. A., Mulkey, S. S., Kitajima, K., Phillips, N. G., and Wright, S. J.: 2003, ‘Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons’, PNAS 100, 572–576.PubMedCrossRefADSGoogle Scholar
  24. Granger, C. W. J. and Newbold, P.: 1974, ‘Spurious regressions in econometrics’, J. Econ. 2, 111–120.zbMATHGoogle Scholar
  25. Hamilton, J. D.: 1994, Time Series Analysis, Princeton University Press, Princeton NJ.zbMATHGoogle Scholar
  26. Hansen, J., Lacis, A., Ruedy, R., and Sato, M.: 1992, ‘Potential climate impact of Mount Pinatubo eruption’, Geophys. Res. Lett. 19, 215–218.ADSGoogle Scholar
  27. Houghton, R. A. and Hackler, J. L.: 1999, ‘Continental Scale Estimates of the Biotic Carbon Flux from Land Cover Change: 1850 to 1980’, CDIAC Data Set.Google Scholar
  28. Houghton, R. A., Davidson, E. A. and Woodwell, G. M.: 1998, ‘Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance’, Global Biogeochem. Cycles 12, 25–34.CrossRefADSGoogle Scholar
  29. Hurrell, J. W.: 1996, ‘Influence of variations in extratropical wintertime teleconnections on northern hemisphere temperature’, Geophys. Res. Lett. 23, 665–668.CrossRefADSGoogle Scholar
  30. Hurrell, J. W.: 1995, ‘Decadal trends in the North Atlantic oscillation: Regional temperature and precipitation’, Science 269, 676–679.ADSPubMedGoogle Scholar
  31. Jones, P. D.: 1994, ‘Estimating sampling error in large scale temperature averages’, J. Clim. 7, 1794–1802.CrossRefADSGoogle Scholar
  32. Jones, P. D.: 1989, ‘The influence of ENSO on global temperatures’, Clim. Monit. 17, 80–89.Google Scholar
  33. Joos, F., et al.: 1999, ‘The variability in the carbon sinks as reconstructed for the last 1000 years’, Geophys. Res. Lett. 26, 1437–1440.CrossRefADSGoogle Scholar
  34. Hamilton, J. D.: 1994, Time Series Analysis. Princeton University Press, Princeton.zbMATHGoogle Scholar
  35. Kattenberg, A. F., et al.: 1996, ‘Climate models — projections of future climate’, in: Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. (eds.), Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge.Google Scholar
  36. Kaufmann, R. K., Kauppi, H., and Stock, J. H.: in review, ‘The relation ebtween radiative forcing and temperature: What do statistical analyses of the observational record measure?’, Clim. Change.Google Scholar
  37. Kaufmann, R. K. and Stern, D. I.: 1997, ‘Evidence for human influence on climate from hemispheric temperature relations’, Nature 388, 39–44.CrossRefADSGoogle Scholar
  38. Kaufmann, R. K. and Stern, D. I.: 2002, ‘Cointegration analysis of hemispheric temperature relations’, J. Geophys. Res. 107, D2 10.1029, 2000JD000174.Google Scholar
  39. Kaufmann, R. K. and Stock, J. H.: 2003, ‘Testing hypotheses about the mechanisms for the unknown carbon sink: A time series analysis’, Global Biogeochem. Cycles 17(2), 1072 doi:10.1029/2002GB001962.Google Scholar
  40. Kauppi, H.: 2004, ‘On the robustness of hypothesis testing based on fully modified vector autoregression when some roots are almost one’, Econ. Theor. 20, 341–359.zbMATHMathSciNetCrossRefGoogle Scholar
  41. Keeling, C. D.: 1973, ‘Industrial production of carbon dioxide from fossil fuels and limestone’, Tellus 25, 174–198.ADSGoogle Scholar
  42. Keeling C. D. and Whorf, T. P.: 1994, ‘Atmospheric CO2 records from sites in the SIO air sampling network’, in: Boden, T. A., Kaiser, D. P., Sepanski, R. J. and Stoss, F. S. (eds.), Trends '93: A Compendium of Data on Global Change, ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge TN, pp. 16–26.Google Scholar
  43. Keeling, C. D., Whorf, T. P., Whalen, M., van der Plicht, J.: 1995, ‘Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980’, Nature 375, 666–670.CrossRefADSGoogle Scholar
  44. Keeling, C. D., et al.: 1989, ‘A three-dimensional model of atmospheric CO2 transport based on observed winds 1, Analysis of observational data, in Aspects of Climate variability in the Pacific and Western Americas’, Geophys. Monogr. Ser. 55, 165–236.Google Scholar
  45. Khalil, M. A. K. and Rasmussen, R. A.: 1994, ‘Global emissions of methane during the last several centuries’, Chemosphere 29, 833–842.CrossRefGoogle Scholar
  46. Krakauer, N. Y. and Randerson, J. T.: 2003, ‘Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings’, Global Biogeochem. Cycles 17(4), 10.1029/2003GB002076.Google Scholar
  47. Lean, J., Beer, J. and Bradley, R.: 1995, ‘Reconstruction of solar irradiance since 1610: Implications for climate change’, Geophys. Res. Lett. 22, 3195–3198.CrossRefADSGoogle Scholar
  48. Lindzen, R. S. and Giannitsis, C.: 1998, ‘On the climatic implications of volcanic cooling’, J. Geophys. Res. 103, 5929–5941.CrossRefADSGoogle Scholar
  49. MacIntyre, F.: 1978, ‘On the temperature coefficient of PCO2 in seawater’, Clim. Change 1, 349–354.MathSciNetCrossRefGoogle Scholar
  50. MacKinnon, J. G.: 1994, ‘Approximate asymptotic distribution functions for unit-root and cointegration tests’, J. Bus. Econ. Stat. 12, 167–176.MathSciNetCrossRefGoogle Scholar
  51. Marland, G. and Rotty, R. M.: 1984, ‘Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950–1982’, Tellus 36B, 232–261.ADSCrossRefGoogle Scholar
  52. Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J.: 2000, ‘The coupled model intercomparison project (CMIP)’, Bull. Am. Met. Soc. 81, 313–318.CrossRefADSGoogle Scholar
  53. Mitchell, J. F. B., Johns, T. C., Gregory, J. M., and Tett, S. F. B.: 1995, ‘Climate response to increasing levels of greenhouse gases and sulfate aerosols’, Nature 376, 501–504.CrossRefADSGoogle Scholar
  54. Mitchell, J. F. B. and Karoly, D. J.: 2001, ‘Detection of climate change and attribution of causes’, in: Houghton et al. (eds.), Climate Change 2001: The Scientific Basis. Cambridge University Press. New York.Google Scholar
  55. Newey, W. K. and West, K. D.: 1987, ‘A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix’, Econometrica 55, 703–708.zbMATHMathSciNetCrossRefGoogle Scholar
  56. Nicholls, N., et al.: 1996, ‘Observed climate variability and change’, in: Houghton, et al. (eds.), Climate Change 1995: The Science of Climate Change. Cambridge University Press, pp. 138–192.Google Scholar
  57. Parker, D. E., Jones, P. D., Folland, C. K., and Bevan, A.: 1994, ‘Interdecadal changes of surface temperature since the late 19th century’, J. Geophys. Res. 99, 14373–14399.CrossRefADSGoogle Scholar
  58. Phillips, P. C. B. and Ouliaris, S.: 1990, ‘Asymptotic properties of residual based tests for cointegration’, Econometrica 58, 190.MathSciNetCrossRefGoogle Scholar
  59. Prather M., McElroy, M., Wofsy, S., Russel, G., and Rind, D.: 1987, ‘Chemistry of the global troposphere: fluorocarbons as tracers of air motion’, J. Geophys. Res. 92D, 6579–6613.ADSCrossRefGoogle Scholar
  60. Prinn, R., et al.: 1990, ‘Atmospheric emissions and trends of nitrous oxide deduced from ten years of ALE/GAUGE data’, J. Geophys. Res. 95, 18369–18385.ADSGoogle Scholar
  61. Prinn, R., et al.: 1995, CDIAC world Data Center dataset no. DB-1001.Google Scholar
  62. Rayner, P. J., Law, R. M., and Dargaville, R.: 1999, ‘The relationship between tropical CO2 fluxes and the El-Nino-Southern Oscillation’, Geophys. Res. Lett. 26, 493–496.CrossRefADSGoogle Scholar
  63. Santer, B. D., et al.: 1996, ‘A search for human influences on the thermal structure of the atmosphere’, Nature 382, 39–46.CrossRefADSGoogle Scholar
  64. Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B.: 1993, ‘Stratospheric aerosol optical depths, 1850–1990’, J. Geophys. Res. 98, 22987–22994.ADSGoogle Scholar
  65. Schimel, D. S., et al.: 2001, ‘Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems’, Nature 414, 169–172.PubMedCrossRefADSGoogle Scholar
  66. Schwarz, G.: 1978, ‘Estimating the dimension of a model’, Annal. Stat. 6, 461–464.zbMATHGoogle Scholar
  67. Shine, K. P. R. G., Derwent, D. J., Wuebbles, D. J., and Mocrette, J. J.: 1991, ‘Radiative forcing of climate’, in: Houghton, J. T., Jenkins, G. J. and Ephramus, J. J. (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, pp. 47–68.Google Scholar
  68. Staiger, D. and Stock, J. H.: 1997, ‘Instrumental variables regression with weak instruments’, Econometrica 65, 557–586.zbMATHMathSciNetCrossRefGoogle Scholar
  69. Stern D. I. and Kaufmann, R. K.: 2000, ‘Detecting a global warming signal in hemispheric temperature series: a structural time series analysis’, Climatic Change 47, 411–438.CrossRefGoogle Scholar
  70. Stern, D. I. and Kaufmann, R. K.: 1996, ‘Estimates of global anthropogenic methane emissions 1860–1993’, Chemosphere 33, 159–176.CrossRefGoogle Scholar
  71. Stock, J. H.: 1987, ‘Asymptotic properties of least squares estimators of co-integrating vectors’, Econometrica 55, 1035–1056.zbMATHMathSciNetCrossRefGoogle Scholar
  72. Stock, J. H. and Watson, M. W.: 1993, ‘A simple estimator of cointegrating vectors in higher order integrated systems’, Econometrica 61, 783–820.zbMATHMathSciNetCrossRefGoogle Scholar
  73. Tett, S. F. B., Stott, P. A., Allen, M. R., Ingram, W. J., and Mitchell, J. F. B.: 1999, ‘Causes of twentieth-century temperature change near the Earth's surface’, Nature 399, 569–572.CrossRefADSGoogle Scholar
  74. Tol, R. S. J. and De Vos, A. F.: 1998, ‘A Bayesian statistical analysis of the enhanced greenhouse effect’, Climatic Change 38, 87–112.CrossRefGoogle Scholar
  75. Vukicevic, T., Braswell, B. H., and Schimel, D.: 2001, ‘A diagnostic study of temperature controls on global terrestrial carbon exchange’, Tellus 53B, 150–170.ADSGoogle Scholar
  76. Wigley, T. M. L., Jones, P. D., and Raper, S. C. B.: 1997, ‘The observed global warming record: What does it tell us?’ Proc. Natl. Acad. Sci. 94, 8314–8320.PubMedCrossRefADSGoogle Scholar
  77. Wigley, T. M. L. and Raper, S. C. B.: 1992, ‘Implications for climate and sea level of revised IPCC emissions scenarios’, Nature 357, 293–300.CrossRefADSGoogle Scholar
  78. Wigley, T. M. L., Smith, R. L., and Santer, B. D.: 1998, ‘Anthropogenic influence on the autocorrelation structure of hemispheric mean temperatures’, Science 282, 1676–1679.PubMedCrossRefADSGoogle Scholar
  79. Wignuth, A. M., Heiman, E. H., Kurz, K. D., Maier-Riemer, E., Mikolajewicz, U., and Segschneider, J.: 1994, ‘E Nino-Southern Oscillation related fluctuations of the marine carbon cycle’, Global Biogeochem. Cycles 8, 39–63.CrossRefADSGoogle Scholar
  80. Wooldridge, J. M.: 2001, Econometric Analysis of Cross Section and Panel Data. Cambridge: MIT Press.Google Scholar
  81. Yang, F. and Schlesinger, M. E.: 2001, ‘Identification and separation of Mount Pinatubo and El Nino-Southern Oscillation land surface temperature anomalies’, J. Geophy. Res. 106, 14757–14770.CrossRefADSGoogle Scholar
  82. Yang, X. and Wang, M.: 2000, ‘Monsoon ecosystems control on atmospheric CO2 interannual variability: Inferred from a significant positive correlation between year-to-year changes in land precipitation and atmospheric CO2 growth rate’, Geophys. Res. Lett. 27, 1671–1674.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Robert K. Kaufmann
    • 1
  • Heikki Kauppi
    • 2
  • James H. Stock
    • 3
  1. 1.Center for Energy & Environmental StudiesBoston UniversityBostonUSA
  2. 2.Department of EconomicsUniversity of HelsinkiHelsinkiFinland
  3. 3.Kennedy School of GovernmentHarvard UniversityCambridgeUSA

Personalised recommendations