Climatic Change

, Volume 79, Issue 1–2, pp 9–29

Climate Variability-Observations, Reconstructions, and Model Simulations for the Atlantic-European and Alpine Region from 1500-2100 AD

  • Christoph C. Raible
  • Carlo Casty
  • Jürg Luterbacher
  • Andreas Pauling
  • Jan Esper
  • David C. Frank
  • Ulf Büntgen
  • Andreas C. Roesch
  • Peter Tschuck
  • Martin Wild
  • Pier-Luigi Vidale
  • Christoph Schär
  • Heinz Wanner
Article

Abstract

A detailed analysis is undertaken of the Atlantic-European climate using data from 500-year-long proxy-based climate reconstructions, a long climate simulation with perpetual 1990 forcing, as well as two global and one regional climate change scenarios. The observed and simulated interannual variability and teleconnectivity are compared and interpreted in order to improve the understanding of natural climate variability on interannual to decadal time scales for the late Holocene. The focus is set on the Atlantic-European and Alpine regions during the winter and summer seasons, using temperature, precipitation, and 500 hPa geopotential height fields. The climate reconstruction shows pronounced interdecadal variations that appear to “lock” the atmospheric circulation in quasi-steady long-term patterns over multi-decadal periods controlling at least part of the temperature and precipitation variability. Different circulation patterns are persistent over several decades for the period 1500 to 1900. The 500-year-long simulation with perpetual 1990 forcing shows some substantial differences, with a more unsteady teleconnectivity behaviour. Two global scenario simulations indicate a transition towards more stable teleconnectivity for the next 100 years. Time series of reconstructed and simulated temperature and precipitation over the Alpine region show comparatively small changes in interannual variability within the time frame considered, with the exception of the summer season, where a substantial increase in interannual variability is simulated by regional climate models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appenzeller C, Stocker TF and Anklin, M. (1998), ‘North Atlantic Oscillation dynamics recorded in Greenland ice cores’, Science 282:446–449CrossRefGoogle Scholar
  2. Arakawa A and Lamb VR (1981), ‘A potential enstrophy and energy conserving scheme for the shallow water equations’, Mon. Wea. Rev. 109:18–36CrossRefGoogle Scholar
  3. Bauer E, Claussen M, Brovkin, V. and Huenerbein, A. (2003), ‘Assessing climate forcings of the Earth system for the past millennium’, Geophys. Res. Lett. 30. DOI:10.1029/2002GL016639Google Scholar
  4. Begert M, Schlegel T and Kirchhofer, W. (2005), ‘Homoteneous temperature and precipitation series of Switzerland from 1864 to 2000’, Int. J. Climatol. 25: 65–80Google Scholar
  5. Blackmon ML, Boville B, Bryan F, Dickinson R, Gent, Kiehl, J. Moritz R, Randall D, Shukla J, Solomon S, Bonan G, Doney S, Fung I, Hack J, Hunke E, Hurrell J, Kutzbach J, Meehl J, Otto-Bliesner B, Saravanan R, Schneider EK, Sloan L, Spall M, Taylor K, Tribbia J and Washington, W. (2001), ‘The Community Climate System Model,’ Bull. Am. Meteorol. Soc. 82:2357–2388CrossRefGoogle Scholar
  6. Böohm R, Auer I, Brunetti M, Maugeri M, Nanni T and Schöoner, W. (2001), ‘Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental series’, Int. J. Climatol. 21:1779–1801CrossRefGoogle Scholar
  7. Bradley, R and Jones PD (1993), “Little Ice Age”xs summer temperature variations: Their nature and relevance to recent global warming trends’, The Holocene 3:367–376Google Scholar
  8. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlen W, Zetterberg P and Eronen, M (1992), ‘Fennoscandian summers from AD 500: Temperature changes on short and long timescales’, Clim. Dyn. 7:111–119CrossRefGoogle Scholar
  9. Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG and Vaganov EA (2001), ‘Low-frequency temperature variations from a northern tree-ring density network’, J. Geophys. Res. 106:2929–2941CrossRefGoogle Scholar
  10. Büuntgen U, Esper J, Frank DC, Nicolussi, K and Schmidhalter, M (2005), ‘A 1052-year tree-ring proxy for Alpine summer temperatures’, Clim. Dyn. in pressGoogle Scholar
  11. Casty C, Handorf D, Raible CC, Luterbacher J, Weisheimer A, Xoplaki, E Gonzalez-Rouco JF, Dethloff K and Wanner, H (2005a) ‘Recurrent climate winter regimes in reconstructed and modelled 500 hPa geopotential height fields over the North Atlantic-European sector 1659–1990’, Clim. Dyn. 24: 809–822, DOI:10.1007/s00382-004-0496-8Google Scholar
  12. Casty C, Wanner, H Luterbacher, J Esper, J and Böohm, R (2005b) ‘Temperature und precipitation variability in the European Alps since 1500’, Int. J. Climatol. 25:1855–1880Google Scholar
  13. Cheng W, Beck R and Rooth, C (2004), ‘Multi-decadal thermohaline variability in an ocean-atmosphere general circulation model’, Clim. Dyn. 22: 573–590, DOI:10.1007/s00382-004-400-6Google Scholar
  14. Cook ER, D’Arrigo RD and Mann ME (2002), ‘A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since AD 1400’, J. Climate 15:1754–1764CrossRefGoogle Scholar
  15. Cook ER, Esper, J and D’Arrigo RD (2004), ‘Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years’, Quat. Sci. Rev 23:2063–2074CrossRefGoogle Scholar
  16. Crowley TJ (2000), ‘Causes of climate change over the past 1000 years’, Science 289:270–277CrossRefGoogle Scholar
  17. Düunkeloh, A and Jacobeit, J (2003), ‘Circulation dynamics of Mediterranean precipitation variability 1948–98’, Int. J. Climatol. 23:1843–1866CrossRefGoogle Scholar
  18. Esper, J (2000), ‘Long term tree-ring variations in Junipers at the upper timberline in the Karakorum (Pakistan)’, The Holocene 10:253–260CrossRefGoogle Scholar
  19. Esper J, Cook ER and Schweingruber FH (2002a) ‘Low-frequency signals in long tree-line chronologies for reconstructing past temperature variability’, Science 295:2250–2253CrossRefGoogle Scholar
  20. Esper J, Frank DC and Wilson RJ, S (2004), ‘Climate reconstructions: Low-frequency ambition and high-frequency ratification’, EOS TransAm, Geophys Union 85:113,120Google Scholar
  21. Esper J, Schweingruber FH and Winiger, M (2002b) ‘1300 years of climate history for Western Central Asia inferred from tree-rings’, The Holocene 12:267–277CrossRefGoogle Scholar
  22. Esper J, Shiyatov SG, Mazepa VS, Wilson RJ, S, Graybill DA and Funkhouser, G (2003), ‘Temperature-sensitive Tien Shan tree ring chronologies show multi-centennial growth trends’, Clim. Dyn. 21:699–706CrossRefGoogle Scholar
  23. Frank DC and Esper, J (2005), ‘Temperature reconstructions and comparison with instrumental data from a tree-ring network for the European Alps’, Int. J. Climatol. 25:1437–1454Google Scholar
  24. Frei C, Christensen JH, Deque M, Jacob D, Jones RG and Vidale PL (2003), ‘Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps’, J. Geophys. Res. 108(D3), 4124, DOI: 10.1029/2002JD002287Google Scholar
  25. Gibson JK, Kallberg P, Uppala S, Hernandez A, Nomura A and Serrano, A (1999), ‘ERA description, Version 2’ Technical report, ERA-15 Project Report Series, No 1, ECMWF, Reading, UK 74ppGoogle Scholar
  26. Goosse H, Crwoley TJ, Zorita E, Ammann H, Renssen CM and Driesschaert, E (2005), Modelling the climate of the last millennium: What causes the differences between simulations, Geophys. Res. Lett. 32:L06710, DOI:10.1029/2005GL022368Google Scholar
  27. Gröotzner A, Latif M and Barnett TP (1998), ‘A decadal cycle in the North Atlantic ocean as simulated by the ECHO coupled GCM’, J. Climate 11:831–847CrossRefGoogle Scholar
  28. Guiot J, Nicault A, Rathgeber C, Edouard J, Guibal F, Pichard G, Till C (2005) Last-millennium summertemperature variations in western Europe based on proxy data. Holocene 15:489–500Google Scholar
  29. Hagemann, S and Duemenil-Gates, L (2001), ‘Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model’, J. Geophys. Res. 106:1503–1510CrossRefGoogle Scholar
  30. Hansen J, Lacis A, Ruedy R and Sato, M (1992), ‘Potential climate impact of Mount Pinatubo eruption’, Geophys. Res. Lett. 19:215–218Google Scholar
  31. Hurrell JW (1995), ‘Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation’, Science 269:676–679CrossRefGoogle Scholar
  32. Hurrell JW, Kushnir Y, Ottersen G and Visbeck, M (2003), The North Atlanitc Oscillation: Climate Significance and Environmental Impact:Vol. 134. Geophysical Monograph Series. 279ppGoogle Scholar
  33. Hurrell JW and Loon HV (1997), ‘Decadal variations in climate associated with the North Atlantic Oscillation’, Clim. Change 36:301–326CrossRefGoogle Scholar
  34. IPCC (2001), Climate Change 2001: The Scientific Basis. Cambridge, UK and New York, NY, USA: Cambridge University Press. Contribution of Working Group I to the Third Assessment Report of the Intergovenmental Panel on Climate Change, 881ppGoogle Scholar
  35. Jacobeit J, Wanner H, Luterbacher J, Beck C, Philipp A and Sturm, K (2003), ‘Atmospheric circulation variability in the North-Atlantic-European area since the mid-seventeenth century’, Clim. Dyn. 20:341–352Google Scholar
  36. Jones PD, Briffa KR, Barnett TP and Tett SF, B (1998), ‘High-resolution palaeoclimatic records for the last millennium: Interpretation, integration and comparison with General Circulation Model control-run temperatures’, The Holocene 8:455–471CrossRefGoogle Scholar
  37. Jones PD, Briffa KR and Osborn TJ (2003), ‘Changes in the Northern Hemisphere annual cycle: Implications for paleoclimatology’, J. Geophys. Res. 108. DOI:10.1029/2003JD003695Google Scholar
  38. Jones PD and Mann ME (2004), ‘Climate over past millennia’, Rev. Geophys. 42:RG2002, DOI:10.1029/2003RG000143Google Scholar
  39. Jones RG, Murphy JM, Hassell DC and Taylor, R (2001), ‘Ensemble mean changes in a simulation of the European climate of 2071–2100 using the new Hadley Centre Regional modelling system HadAM3H/HadRM3H’, Technical report, Hadley Centre, Exeter, UK available at http://prudence.dmi.dklGoogle Scholar
  40. Kalnay E, Kanamitsu M, Kistler R, Collins W, Coauthors (1996), ‘The NCEP/NCAR 40 year reanalysis project’, Bull. Amer. Meteor. Soc. 77:437–471Google Scholar
  41. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL and Rasch PJ (1998), ‘The National Center for Atmospheric Research Community Climate Model: CCM3’, J. Clim. 11:1131–1149CrossRefGoogle Scholar
  42. Kistler R, Kalnay E, Collins W, Saha S, Coauthors (2001), ‘The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation’, Bull. Amer. Meteor. Soc. 77:437–471Google Scholar
  43. Latif M, Roeckner E, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S and Mikolajewicz, U (2004), ‘Reconstructing, monitoring and predicting multidecadal-scale changes in the North Atlantic Thermohaline Circulation with sea surface temperature’, J. Clim. 17:1606–1614CrossRefGoogle Scholar
  44. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M and Wanner, H (2004), ‘European seasonal and annual temperature variability, trends and extremes since 1500’, Science 303:1499–1503CrossRefGoogle Scholar
  45. Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C and Wanner, H (2001), ‘The late Maunder Minimum (1675–1715) — a key period for studying decadal scale climatic change in Europe’, Clim. Change 49:441–462CrossRefGoogle Scholar
  46. Luterbacher J, Schmutz C, Gyalistras D, Xoplaki E and Wanner, H (1999), ‘Reconstruction of monthly NAO and EU indices back to AD 1675’, Geophys. Res. Lett. 26:2745–2748CrossRefGoogle Scholar
  47. Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistras D, Casty, C and Wanner, H (2002a) ‘Extending North Atlantic Oscillation reconstructions back to 1500’, Atmos. Sci. Lett. 2:114–124CrossRefGoogle Scholar
  48. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C and Wanner, H (2002b) ‘Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500’, Clim. Dyn. 18:545–561Google Scholar
  49. Mann ME, Bradley RS and Hughes MK (1998), ‘Global-scale temperature patterns and climate forcing over the past six centuries’, Nature 392:779–787CrossRefGoogle Scholar
  50. Mann ME, Rutherford S, Wahl ER and Ammann CM (2005), ‘Testing the fidelity of methodologies used in ‘proxy’-based reconstructions of past climate’, J. Clim. 18:4097–4107Google Scholar
  51. Marshall J, Johnson, H and Goodman, J (2001), ‘A study of the interaction of the North Atlantic Oscillation with ocean circulation’, J. Clim. 14:1399–1421CrossRefGoogle Scholar
  52. Marsland SJ, Haak H, Jungclaus JH, Latif M and Roeske, F (2003), ‘The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates’, Ocean Model. 5:91–127CrossRefGoogle Scholar
  53. Meehl GA, Washington WM, Wigley TM, L, Arblaster JM and Dai, A (2003), ‘Solar and greenhouse gas forcing and climate response in the twentieth century’, J. Clim. 16:426–444CrossRefGoogle Scholar
  54. Mitchell TD, Carter TR, Jones PD, Hulme M and New, M (2004), ‘A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100)’, Technical Report Working Paper 55, Tyndall Center for Climate Change ResearchGoogle Scholar
  55. Moberg A, Sonechkin DM, Holmgren K, Datsenko NW and Karlen, W (2005), ‘Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data’, Nature 433:613–617CrossRefGoogle Scholar
  56. New M, Hulme M and Jones PD (2000), ‘Representing twentieth-century space-time climate variability. Part II: Development of 1901–1996 monthly grids of terrestrial surface climate’, J. Clim. 13:2217–2238CrossRefGoogle Scholar
  57. Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A, Lamoureux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A and Zielinski, G (1997), ‘Arctic environmental change of the last four centuries’, Science 278:1251–1256CrossRefGoogle Scholar
  58. Pauling A, Luterbacher, J Casty C and Wanner, H (2006), ‘500 years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation’, Clim. Dyn. 26:387–405Google Scholar
  59. Pfister, C (1992), Monthly Temperature and Precipitation in Central Europe 1525–1979: Quantifying Documentary Evidence on Weather and its Effects. In: Climate since A.D. 1500, Bradley, RS. and Jones, PD. (eds). Routledge: LondonGoogle Scholar
  60. Pope DV, Gallani M, Rowntree R and Stratton, A (2000), ‘The Impact of new physical parameterizations in the Hadley Centre climate model HadAM3’, Clim. Dyn. 16:123–146CrossRefGoogle Scholar
  61. Raible CC, Luksch, U and Fraedrich, K (2004), ‘Precipitation and Northern Hemisphere Regimes’, Atmos. Sci. Lett. 5:43–55, DOI:10.1016/j.atmoscilet.2003.12.001Google Scholar
  62. Raible CC, Luksch U, Fraedrich K and Voss. R. (2001), ‘North Atlantic decadal regimes in a coupled GCM simulation’, Clim. Dyn. 18:321–330CrossRefGoogle Scholar
  63. Raible CC, Stocker TF, Yoshimori M, Renold M, Beyerle U, Casty C and Luterbacher, J (2005), ‘Northern Hemispheric trends of pressure indices and atmospheric circulation patterns in observations, reconstructions and coupled GCM simulations’, J. Clim. 18:3968–3982Google Scholar
  64. Renold M, Beyerle U, Raible CC, Knutti R, Stocker TF and Craig, T (2004), ‘Climate modeling with a Linux cluster’, EOS TransAm, Geophys Union 85:292Google Scholar
  65. Rind D, Lean, J and Healy, R (1999), ‘Simulated time-dependent climate response to solar radiative forcing since 1600’, J. Geophys. Res. 104:1973–1990CrossRefGoogle Scholar
  66. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U and Tompkins, A (2003), ‘The atmospheric general circulation model ECHAM5: Part I: Model description’, Technical Report 349, Max-Planck-Institut, Hamburg, GermanyGoogle Scholar
  67. Schäar C, Lüuthi D, Beyerle U and Heise, E (1999), ‘The soil-precipitation feedback: A process study with a regional climate model’, J. Clim. 12:722–741CrossRefGoogle Scholar
  68. Schäar C, Vidale PL, Lüuthi D, Häaberli C, Liniger MA and Appenzeller, C (2004), ‘The role of increasing temperature variability in European summer heatwaves’, Nature 427:332–336CrossRefGoogle Scholar
  69. Schmidli J, Schmutz C, Frei C, Wanner H and Schär, C (2002), ‘Mesoscale precipitation variability in the Alpine region during the 20th century’, Int. J. Climatol. 22:1049–1074CrossRefGoogle Scholar
  70. Shindell DT, Schmidt GA, Miller RL and Mann ME (2003), ‘Volcanic and solar forcing of climate change during the preindustrial era’, J. Clim. 16:4094–4107CrossRefGoogle Scholar
  71. Shindell DT, Schmidt GA, Miller RL and Rind., D. (2001), ‘Northern Hemisphere winter climate response to greenhouse gas, ozone, solar and volcanic forcing’, J. Geophy. Res. 106:7193–7210CrossRefGoogle Scholar
  72. Terray L, Valcke S and Piacentini, A (1998), ‘The OASIS coupler user guide, version 2.2’, Technical Report TR/CMGC/98–05, CERFACSGoogle Scholar
  73. Ulbrich, U and Christoph, M (1999), ‘A shift of the NAO and increasing storm track activity over Europe due to anthropogenic Greenhouse gas forcing’, Clim. Dyn. 15:551–559CrossRefGoogle Scholar
  74. Vidale PL, Lüuthi D, Frei C, Seneviratne SI and Schäar, C (2003), ‘Predictability and uncertainty in a regional climate model’, J. Geophys. Res. 108. DOI:10.1029/2002JD002810Google Scholar
  75. Vinther BM, Johnsen SJ Andersen KK, Clausen HB and Hansen AW (2003), ‘NAO signal recorded in the stable isotopes of Greenland ice cores’, Geophys. Res. Lett. 30(7), 1387, DOI: 10.1029/2002GL016193Google Scholar
  76. von Storch H, Zorita E, Jones J, Dimitriev Y, Gonzalez-Rouco F and Tett, S (2004), ‘Reconstructing past climate from noisy data’, Science 306:679–682, DOI:10.1126/science.1096109Google Scholar
  77. Wallace JM and Gutzler DS (1981), ‘Teleconnections in the geopotential height field during the Northern Hemisphere winter’, Mon. Wea. Rev. 109:782–812Google Scholar
  78. Wanner H, Bröonnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB and Xoplaki, E (2001), ‘North Atlantic Oscillation - concepts and studies’, Survey Geophys. 22:321–382CrossRefGoogle Scholar
  79. Wild M, Calanca P, Scherrer SC and Ohmura, A (2003), ‘Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios’, J. Geophys. Res. 108. DOI:10.1029/2002JD002451Google Scholar
  80. Wolff JO, Maier-Reimer E and Legutke, S (1997), ‘The Hamburg Ocean primitive equation model HOPE’, Technical Report 13, Deutsches Klimarechenzentrum, Hamburg, GermanyGoogle Scholar
  81. Xoplaki E, Gonzalez-Rouco JF, Luterbacher J and Wanner, H (2004), ‘Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends’, Clim. Dyn. 23:63–78CrossRefGoogle Scholar
  82. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:L15713:DOI: 10.1029/2005GL023424Google Scholar
  83. Yoshimori M, Stocker TF, Raible CC and Renold, M (2005), ‘Internal and externally-forced varibilities in an ensemble of climate simulations of the Maunder Minimum’, J. Clim. 18:4253–4270Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Christoph C. Raible
    • 1
  • Carlo Casty
    • 2
  • Jürg Luterbacher
    • 2
  • Andreas Pauling
    • 2
  • Jan Esper
    • 3
  • David C. Frank
    • 3
  • Ulf Büntgen
    • 3
  • Andreas C. Roesch
    • 4
  • Peter Tschuck
    • 4
  • Martin Wild
    • 4
  • Pier-Luigi Vidale
    • 4
  • Christoph Schär
    • 4
  • Heinz Wanner
    • 2
  1. 1.Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland
  2. 2.Institute of GeographyUniversity of BernBernSwitzerland
  3. 3.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  4. 4.Institute for Atmospheric and Climate Science ETHZürichSwitzerland

Personalised recommendations