Climatic Change

, Volume 75, Issue 4, pp 455–493 | Cite as

Twentieth Century Climate in the New York Hudson Highlands and the Potential Impacts on Eco-Hydrological Processes

  • Kirsten WarrachEmail author
  • Marc Stieglitz
  • Jeffrey Shaman
  • Victor C. Engel
  • Kevin L. Griffin


During the 20th century the northeastern U.S.A. has undergone an annual temperature increase of 1 °C, the combined effect of winter warming and an increase in daily summer minimum temperatures. A significant cooling of spring through autumn in maximum air temperatures is also evident since 1950. Therefore, the primary objective of this study is to document these climate trends and variability over the last century. A secondary objective is to provide a preliminary analysis of how these changes may have impacted hydrologic and ecosystem processes. Specifically, with respect to ecosystem processes, we examine how the cooling of daytime maximum temperatures may have impacted plant respiration and biomass accumulation. The study site is the Black Rock Forest, an experimental forest located in Hudson Highlands of New York that has been maintained as a conservation area over the last 100 years. For the region centered about the forest, there exists a climate/weather record and an extensively maintained biomass record that extends continuously from the early part of the 20th century through present. With such an extensive physical and biological record to draw from, this forest provides a microcosm for studying how changes in 20th century local and regional climate may have impacted ecosystem processes such as species adaptation, biomass growth, and 20th century carbon sequestration. In a subsequent paper we will more extensively explore the relationship between this record of changing climate and eco-hydrological processes.


Biomass Ecosystem Process Annual Temperature Increase Summer Minimum Experimental Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alley, W. M.: 1984, ‘The Palmer Drought Severity Index: Limitations and assumptions’, J. Clim. Appl. Meteorol. 23, 1100–1109.CrossRefGoogle Scholar
  2. Anderson, E. A. and Baker, D. R.: 1967, ‘Estimating incident terrestrial radiation under all atmospheric conditions’, Water Res. Res. 3(4), 975–988.Google Scholar
  3. Arneth, A., Kelliher, F. M., McSeveny, T. M., and Byers, J. N.: 1998, ‘Net-ecosystem productivity, net primary productivity and carbon sequestration in a Pinus radiata plantation subject to soil water deficit’, Tree Physiol. 18, 785–793.Google Scholar
  4. Bailey, R. L. and Dell, T. R.: 1973, ‘Quantifying diameter distribution with the Weibull-function’, For. Sci. 19, 97–104.Google Scholar
  5. Beven, K. and Kirby, M. J.: 1979, ‘A physically based, variable contributing area model of basin hydrology’, Hydrol. Sci. J. 24, 43–69.CrossRefGoogle Scholar
  6. Beven, K. J.: 2000, Rainfall-Runoff Modelling: The Primer, Wiley, Chichester, U.K., p. 360.Google Scholar
  7. Billings, W. D., Loken, J. O., Mortensen, D. A., and Peterson, K. M.: 1982, Arctic tundra: A sink or source for atmospheric carbon dioxide in a changing environment. Oecologia 53, 7–11.CrossRefGoogle Scholar
  8. Carey, V. C., Sala, A., Keane, R., and Callaway, R. M.: 2001, ‘Are old forests underestimated as global carbon sinks?’, Global Change Biol. 7, 339–344.CrossRefGoogle Scholar
  9. Cook, E., Meko, D., Stahle, D., and Cleaveland, M.: 2002, ‘
  10. Cox, D. R. and Stuart, A.: 1955, ‘Quick sign tests for trend in location and dispersion’, Biometrika 42, 80–95.CrossRefGoogle Scholar
  11. Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P., and Folland, C. K.: 1997, ‘Maximum and minimum temperature trends for the globe’, Science 277, 364–367.CrossRefGoogle Scholar
  12. Engel, V., Stieglitz, M., Williams, M., and Griffin, K. L.: 2002, ‘Forest canopy hydraulic properties and catchment water balance: Observations and modeling’, Ecol. Model. 154, 263–288.CrossRefGoogle Scholar
  13. Farquhar, G. D., and von Caemmerer, S.: 1982, ‘A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species’, Planta 149, 178–190.Google Scholar
  14. Goulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C., and Wofsy, S. C.: 1996, ‘Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability’, Science 271, 1576–1578.Google Scholar
  15. Groffman, P. M., Driscoll, C. T., Fahey, T. J., Hardy, J. P., Fitzhugh, R. D. and Tierney, G. L.: 2001, ‘Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest’, Biogeochemistry 56, 191–213.CrossRefGoogle Scholar
  16. Groisman, P. Y., Knight, R. W., and Karl, T. R.: 2001, ‘Heavy precipitation and high streamflow in the contiguous United States: trends in the twentieth century’, Bull. Am. Meteorol. Soc. 82(2), 219–246.CrossRefGoogle Scholar
  17. Heim, R. R., Jr.: 2002, ‘A review of twentieth-century drought indices used in the United States’, Bull. Am. Meteorol. Soc. 83(8), 1149–1165.Google Scholar
  18. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (Eds): 2001, Climate Change 2001, The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, U.K., p. 881.Google Scholar
  19. Janssen, P. H. M. and Heuberger, P. S. C.: 1995. ‘Calibration of process-oriented models’, Ecol. Model. 83, 55–66.Google Scholar
  20. Johnson, L. C., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., Rastetter, E. R., Laundre, J. A., and Murray, G. L.: 1996, ‘Effects of drainage and temperature on carbon balance of tussock tundra microcosms’, Oecologia 108, 737–748.CrossRefGoogle Scholar
  21. Karl, T. R., Williams, C. N., Jr., Young, P. J., and Wendland, W. M.: 1986, ‘A model to estimate the time of observation bias associated with monthly mean maximum, minimum, and mean temperature for the United States’, J. Clim. Appl. Meteorol. 25, 145–160.CrossRefGoogle Scholar
  22. Karl, T. R., and Williams, C. W., Jr.: 1987, ‘An approach to adjusting climatological time series for discontinuous inhomogeneities’, J. Climate Appl. Meteorol. 26, 1744–1763.Google Scholar
  23. Karl, T. R., Diaz, H. F., and Kukla, G.: 1988. ‘Urbanization: Its detection and effect in the United States climate record’, J. Clim. 1, 1099–1123.CrossRefGoogle Scholar
  24. Karl, T. R. and Heim, R. R., Jr.: 1990, ‘Are droughts becoming more frequent or severe in the United States?’, Geophys. Res. Lett. 17(11), 1921–1924.Google Scholar
  25. Karl, T. R., Williams, C. N., Jr., Quinlan, F. T., and Boden, T. A.: 1990, ‘United States Historical Climatology Network (HCN) Serial Temperature and Precipitation Data’, Environmental Science Division, Publication No. 3404, Carbon Dioxide Information and Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN.Google Scholar
  26. Karl, T. R., Knight, R. W., Easterling, D. R., and Quayle, R. G.: 1996, ‘Indices of climate change for the United States’, Bull. Am. Meteorol. Soc. 77(2), 279–292.CrossRefGoogle Scholar
  27. Karl, T. R. and Knight, R. W.: 1998, ‘Secular trends of precipitation amount, frequency, and intensity in the United States’, Bull. Am. Meteorol. Soc. 79(2), 231–241.CrossRefGoogle Scholar
  28. Kutsch, W. L. and Kappen, L.: 1997, ‘Aspects of carbon and nitrogen cycling in soils of the Bornhöved Lakes district II. Modelling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different management’, Biogeochemistry 39, 207–224.CrossRefGoogle Scholar
  29. Law, B. E., Ryan, M. G., and Anthoni, P. M.: 1999, ‘Seasonal and annual respiration of a ponderosa pine ecosystem’, Global Change Biol. 5, 169–182.CrossRefGoogle Scholar
  30. Lloyd, J. and Taylor, J. A.: 1994, ‘On the temperature dependence of soil respiration’, Funct. Ecol. 8, 315–323.Google Scholar
  31. Maier, C. A., Zarnoch, S. J., and Dougherty, P. M.: 1998, ‘Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation’, Tree Physiol. 18, 11–20.Google Scholar
  32. Martin, J. G., Kloeppel, B. D., Schaefer, T. L., Kimbler, D. L., and McNulty, S. G.: 1998. ‘Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species’, Can. J. For. Res. 28, 1648–1659.CrossRefGoogle Scholar
  33. McKane, R. B., Rastetter, E. B., Shaver, G. R., Nadelhoffer, K. J., Giblin, A. E., Laundre, J. A., and Chapin, F. S.: 1997. ‘Reconstruction and analysis of historical changes in carbon storage in arctic tundra’, Ecology 78, 1188–1198.CrossRefGoogle Scholar
  34. Nemani, R., White, M., Thornton, P., Nishida, K., Reddy, S., Jenkins, J., and Running, S.: 2002, ‘Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States’, Geophys. Res. Lett. 2002GL014867.Google Scholar
  35. Oechel, W. C., Hastings, S. J., Vourlitis, G., Jenkins, M., Riechers, G., and Grulke, N.: 1993, ‘Recent change of arctic tundra ecosystems from a net carbon-dioxide sink to a source’, Nature 361, 520–523.CrossRefGoogle Scholar
  36. Palmer, W. C.: 1965, Meteorological Drought, Res. Paper No.45, Dept. of Commerce, Washington, D.C., p. 58.Google Scholar
  37. Rajagopalan, B., and Lall, U.: 1999, ‘A k-nearest-neighbor simulator for daily precipitation and other weather variables’, Water Resour. Res. 35(10), 3089–3101.CrossRefGoogle Scholar
  38. Ryan, M. G.: 1991, ‘The effects of climate change on plant respiration’, Ecol. Appl. 1, 157–167.Google Scholar
  39. Schönwiese, C. D.: 1985, Praktische Statistik für Meteorologen und Geowissenschaftler, Gebrüder Bornträger, Berlin, p. 231.Google Scholar
  40. Schuster, W. S. F., Griffin, K. L., Brown, K. J., Turnbull, M. H., Whitehead, D., and Tissue, D. T.: 2004, Changes in tree biomass and carbon content over seven decades (1930–2000) in an aggrading deciduous forest. Can. J. For., in press.Google Scholar
  41. Shaman, J., Stieglitz, M., Engel, V. C., Koster, R., and Stark, C.: 2002, ‘Representation of stormflow and a more responsive water table in a TOPMODEL-based hydrology model’, Water Resour. Res. 38, 1–3.CrossRefGoogle Scholar
  42. Shaman, J., Stieglitz, M., Zebiak, S., and Cane, M.: 2003, ‘A local forecast of land surface wetness conditions derived from seasonal climate predictions’, J. Hydrometeorol. 4, 611–626.CrossRefGoogle Scholar
  43. Stieglitz, M., Rind, D., Famiglietti, J., and Rosenzweig, C.: 1997, ‘An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling’, J. Clim. 10, 118–137.CrossRefGoogle Scholar
  44. Thornthwaite, C. W.: 1948, ‘An approach towards a rational classification of climate’, Geograph. Rev. 38, 55–94.CrossRefGoogle Scholar
  45. Turnbull, M. H., Whitehead, D., Tissue, D. T., Schuster, W., Brown, K. J., and Griffin, K. G.: 2001, ‘Responses of leaf respiration to temperature and leaf characteristics in three deciduous tree species vary with site water availability’, Tree Physiol. 21, 571–578.Google Scholar
  46. Turnbull, M. H., Whitehead, D., Tissue, D. T., Schuster, W., Brown, K. J., Engel, V. C., and Griffin, K. G.: 2002, ‘Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability’, Oecologia 130, 515–524.CrossRefGoogle Scholar
  47. Turnbull, M. H., Whitehead, D., Tissue, D. T., Schuster, W. S. F., Brown, K. J., and Griffin, K. L.: 2003. ‘Scaling foliar respiration in two contrasting forest canopies’, Funct. Ecol. 17, 101–114.CrossRefGoogle Scholar
  48. Vinnikov, K. Y., Robock, A., and Basist, A. M.: 2002, ‘Diurnal and seasonal cycles of trends of surface air temperature’, J. Geophys. Res. 107(D22), 4641, doi:10.1029/2001JD002007.Google Scholar
  49. Vose, J. M., and Ryan, M. G.: 2002, ‘Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N content, and photosynthesis’, Global Change Biol. 8, 182–193.CrossRefGoogle Scholar
  50. Warrach, K., Mengelkamp, H.-T., and Raschke, E.: 2001, ‘Treatment of frozen soil and snow cover in the land surface model SEWAB’, Theor. Appl. Climatol 69, 23–37.CrossRefGoogle Scholar
  51. Webb, R. S., Rosenzweig, C. E., and Levine, E. R.: 1993, ‘Specifying land surface characteristics in general circulation models: Soil profile data set and derived water-holding capacities’, Global Biogeochem. Cycles 7(1), 97–108.Google Scholar
  52. Weinstein, D. A., Samuelson, L. J., Arthur, M. A.: 1998, ‘Comparison of the response of red oak (Quercus rubra) seedlings and mature trees to ozone exposure using simulation modeling’, Environ. Pollut. 102, 307–320.CrossRefGoogle Scholar
  53. Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Wofsy, S. C., Shaver, G. R., Melillo, J. M., Munger, J. W., Fan, S.-M., and Nadelhoffer, K. J.: 1996, ‘Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties’, Plant Cell Environ. 19, 911–927.CrossRefGoogle Scholar
  54. Williams, M., Law, B. E., Anthoni, P. M., and Unsworth, M. H.: 2001, ‘Use of a simulation model and ecosystem flux data to examine carbon-water interactions in ponderosa pine’, Tree Physiol. 21, 287–298.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Kirsten Warrach
    • 1
    Email author
  • Marc Stieglitz
    • 2
  • Jeffrey Shaman
    • 3
  • Victor C. Engel
    • 4
  • Kevin L. Griffin
    • 5
  1. 1.Institut für Physik und Meteorologie (120)Universität HohenheimStuttgartGermany
  2. 2.School of Civil and Environmental Engineering and School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaU.S.A.
  3. 3.Department of Earth and Planetary SciencesHarvard UniversityU.S.A.
  4. 4.National Parks ServiceEverglades National ParkHomesteadU.S.A.
  5. 5.Lamont Doherty Earth ObservatoryNew YorkU.S.A.

Personalised recommendations