Climatic Change

, Volume 68, Issue 3, pp 331–353 | Cite as

Modeling the potential effects of climate change on water temperature downstream of a shallow reservoir, lower madison river, MT

  • Michale N. Gooseff
  • Kenneth Strzepek
  • Steven C. Chapra
Article

Abstract

A numerical stream temperature model that accounts for kinematic wave flow routing, and heat exchange fluxes between stream water and the atmosphere, and stream water and the stream bed is developed and calibrated to a data-set from the Lower Madison River, Montana, USA. Future climate scenarios were applied to the model through changes to the atmospheric input data based on air temperature and solar radiation output from four General Circulation Models (GCM) for the region under atmospheric CO2 concentration doubling. The purpose of this study was to quantify potential climate change impacts on water temperature for the Lower Madison River, and to assess possible impacts to aquatic ecosystems. Because water temperature is a critical component of fish habitat, this information could be of use in future planning operations of current reservoirs. We applied air temperature changes to diurnal temperatures, daytime temperatures only, and nighttime temperatures only, to assess the impacts of variable potential warming trends. The results suggest that, given the potential climatic changes, the aquatic ecosystem downstream of Ennis Lake will experience higher water temperatures, possibly leading to increased stress on fish populations.Daytime warming produced the largest increases in downstream water temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowles, D. S., Fread, D. L. and Grenney, W. J.: 1977, ‘Coupled dynamic streamflow-temperature models’, J. Hydraul. Div., ASCE 103(HY5), 515–530.Google Scholar
  2. Brady, D. K., Graves, W. L., and Geyer, J. C.: 1969, Surface Heat Exchange at Power Plant Cooling Lakes, Cooling Water Discharge Project Report, No. 5, Edison Electric Inst. Publication No. 69–901, New York.Google Scholar
  3. Bravo, H. R., Drajewski, W. F., and Holly, F. M.: 1993, ‘State space model for river temperature prediction’, Water Resour. Res. 29, 1457–1466.Google Scholar
  4. Brocard, D. N. and Harleman, D. R. F.: 1976, ‘One-dimensional temperature predictions in unsteady flows’, J. Hydraul. Div., ASCE, 102(HY3), 227–240.Google Scholar
  5. Brown, G. W.: 1969, ‘Predicting temperatures of small streams’, Water Resour. Res. 5, 68–75.Google Scholar
  6. Caissie, D., El-Jabi, N., and Satish, M. G.: 2001, Modelling of maximum daily water temperatures in a small stream using air temperatures’, J. Hydrol. 251, 14–28.Google Scholar
  7. Chapra S. C.: 1997, Surface Water Quality Modeling, McGraw-Hill, New York.Google Scholar
  8. Clark, M. E., Rose, K. A., Levine, D. A., and Hargrove, W. W.: 2001, ‘Predicting climate change effects on Appalachian trout: Combining GIS and individual-based modeling’, Ecol. App. 11, 161–178.Google Scholar
  9. Cubasch, U., Hasselmann, K., Hock, H., Maier-Reimer, E., Mikolajewicz, U., Santer, B. D., and Sausen, R.: 1992, ‘Time-dependent greenhouse warming computations with a coupled ocean atmosphere model’, Clim. Dynam. 8, 55–69.Google Scholar
  10. Eaton, J. G. and Scheller R. M.: 1996, ‘effects of climate change on fish thermal habitat in streams of the United States’, Limnol. Oceanogr. 41, 1109–1115.CrossRefGoogle Scholar
  11. EPA: 1995, Ecological Impacts From Climate Change: An Economic Analysis of Freshwater Recreational Fishing, Report by Office of Planning and Evaluation.Google Scholar
  12. Fagre, D. B., Comanor, P. L., White, J. D., Hauer F. R., and Running S. W.: 1997, ‘Watershed responses to climate change at glacier national park’, J. Am. Water Resour. Assoc. 33, 755–765.Google Scholar
  13. Ford, D. E. and Stefan, H. G.: 1980, ‘Thermal predictions using integral energy model’, J. Hydraul. Div., ASCE 103(HY1), 39–55.Google Scholar
  14. Gleick, P. H.: 1986, ‘Methods for evaluating the regional hydrologic impacts of global climatic changes’, J. Hydrol. 88, 97–116.Google Scholar
  15. Gleick, P. H.: 1987a, ‘Regional hydrologic consequences of increases in atmospheric co2 and other trace gases’, Clim. Change 10, 137–161.Google Scholar
  16. Gleick, P. H.: 1987b, ‘The development and testing of a water balance model for climate impact assessment: Modeling the Sacramento basin’, Water Resour. Res. 23, 1049–1061.CrossRefGoogle Scholar
  17. Greco, S., Moss, R. H., Viner, D., and Jenne, R.: 1994, Climate Scenarios and Socioeconomic Projections for IPCC WG II Assessment. Intergovernmental Panel on Climate Change Working Group II Report.Google Scholar
  18. Hauer, F. R., Baron, J. S., Campbell, D. H., Fausch, K. D., Hostetler, S. W., Leavesley, G. H., Leavitt, P. R., McKnight, D. M., and Stanford, J. A.: 1997, ‘Assessment of climate change and freshwater ecosystems of the rocky mountains, USA and Canada’, Hydrol. Proc. 11, 903–924.Google Scholar
  19. Helsel, D. R., and Hirsch, R. M.: 1992, Statistical Methods in Water Resources, Elsevier, 529 p.Google Scholar
  20. Hogg, I. D., Williams, D. D., Eadie, J. M., and Butt, S. A.: 1995, ‘The consequences of global warming for stream invertebrates: A field simulation’, J. Thermal Biol. 20, 199–206.Google Scholar
  21. Jourdonnais, J. H., Walsh, R. P., Pickett, F. J., and Goodman, D.: 1992, ‘Structure and calibration strategy for a water temperature model of the lower Madison River, Montana’, Rivers, 3, 153–169.Google Scholar
  22. Joss, J. and Resele, G.: 1987, ‘Mathematical modeling of the heat exchange between a river and the atmosphere’, Boundary-Layer Met. 41, 27–40.Google Scholar
  23. Keleher, C. J. and Rahel, F. J.: 1996, ‘Thermal limits to salmonid distributions in the rocky mountain region and potential habitat loss due to global warming: A Geographic information system (GIS) approach’, Trans. Am. Fish. Soc. 125: 1–13.Google Scholar
  24. Kim, K. S. and Chapra, S. C.: 1997, ‘Temperature model for highly transient shallow streams’, J. Hydraul. Eng. 123, 30–40.Google Scholar
  25. Lettenmaier, D. P. and Gan, T. Y.: 1990, ‘Hydrologic sensitivities of the Sacramento–San Joaquin River Basin, California, to global warming’, Water Resour. Res. 26(1), 69–86.Google Scholar
  26. Louge, J., Tiku, P., and Cossins, A. R.: 1995, ‘Heat injury and resistance adaptation in fish’, J. Therm. Biol. 20, 191–197.Google Scholar
  27. Magnuson, J. J., Meisner, J. D., and Hill, D. K.: 1990, ‘Potential changes in the thermal habitat of great lakes fish after global climate warming’, Trans. Am. Fish. Soc. 119, 254–264.Google Scholar
  28. Manabe, S., Spelman, M. J., and Stouffer, R. J.: 1992a, ‘Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2: Part I: Annual mean response’, J. Clim. 4, 785–818.Google Scholar
  29. Manabe, S., Spelman, M. J., and Stouffer, R. J.: 1992b, ‘Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2: Part II: Seasonal response’, J. Clim. 5, 105–126.Google Scholar
  30. Matthews, W. J. and Zimmerman, E. G.: 1990, ‘potential effects of global warming on native fishes of the Southern Great Plains and Southwest’, Fisheries 15, 26–32.Google Scholar
  31. Meisner, J. D.: 1990, ‘Potential loss of thermal habitat for brook trout, due to climatic warming, in two Southern Ontario streams’, Trans. Am. Fish. Soc. 119, 282–291.Google Scholar
  32. Mitchell, J. F. B. and Johns, T. J.: 1997, ‘Sensitivity of regional and seasonal climate to transient forcing by CO2 and aerosols’, J. Climate 10, 245–267.Google Scholar
  33. Mohseni, O. and Stefan, H. G.: 1999, ‘Stream temperature/air temperature relationship: A physical interpretation’, J. Hydrol. 218, 128–141.Google Scholar
  34. Mohseni, O., Stefan, H. G., and Eaton, J. G.: 2003, ‘Global warming and potential changes in fish habitat in U.S. Streams’, Clim. Change 59, 389–409.Google Scholar
  35. Mohseni, O., Stefan, H. G., and Erickson, T. R.: 1998, ‘A nonlinear regression model for weekly stream temperatures’, Water Resour. Res. 34, 2685–2692.Google Scholar
  36. Morse, W. L.: 1970, ‘Stream temperature prediction model’, Water Resour. Res. 6, 290–302.Google Scholar
  37. Nemerow, N. L.: 1974, Scientific Stream Pollution Analysis, McGraw-Hill, New York.Google Scholar
  38. Rahel, F. J., Keleher, C. J., and Anderson, J. L.: 1996, ‘Potential habitat loss and population fragmentation for cold water fish in the North Platte River drainage of the Rocky Mountians: Response to climate warming’, Limnol. Oceanogr 41, 1116–1123.Google Scholar
  39. Raudkivi, A. J.: 1979, Hydrology, Pergamon, Oxford, England.Google Scholar
  40. Reid, S. D., Dockray, J. J., Linton, T. K., McDonald, D. G., and Wood, C. M.: 1997, ‘Effects of chronic environmental acidification and a summer global warming scenario: Protein synthesis in juvenile rainbow trout’, Can. J. Fish. Aqu. Sci. 54, 2014–2024.Google Scholar
  41. Schindler, D. W., Bayley, S. E., Parker, B. R., Beaty, K. G., Cruikshank, D. R., Fee, E. J., Schindler, E. U., and Stainton, M. P.: 1996, ‘The effects of climatic warming on the properties of boreal lakes and streams at the experimental lakes area, Northwestern Ontario’, Limnol. Oceanogr. 41, 1004–1017.CrossRefGoogle Scholar
  42. Schindler, D. W.: 1997, ‘Widespread effects of climatic warming on freshwater ecosystems in North America’, Hydrol. Proc. 11, 1043–1067.Google Scholar
  43. Schlesinger, M. E., Andronova, N., Ghanem, A., Malyshev, S., Reichler, T., Rozanov, E., Wang, W., and Yang, F.: 1997, ‘Geographical Scenarios of Greenhouse-Gas and Anthropogenic-Sulfate-Aerosol Induced Climate Changes’, Climate Research Group, Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, pp. 86.Google Scholar
  44. Schlesinger, M. E., Malyshev, S., Rozanov, E. V., Yang, F., Andronova, N. G., de Vries, B., Grübler, A., Jiang, K., Masui, T., Morita, T., Penner, J., Pepper, W., Sankovski, A., and Zhang, Y.: 2000, ‘Geographical distributions of temperature change for scenarios of greenhouse gas and sulfur dioxide emissions’, Technol. Forecast. Social Change 65, 167–193.Google Scholar
  45. Sinokrot, B. A. and Stefan, H. G.: 1993, ‘Stream temperature dynamics’, Water Resour. Res. 29, 2299–2312.Google Scholar
  46. Stefan, H. G., Fang, X., and Eaton, J. G.: 2001, ‘Simulated fish habitat changes in North American lakes in response to projected climate warming’, Trans. Am. Fish. Soc. 130, 459–477.Google Scholar
  47. Stefan, H. G., Hondzo, M., and Fang, X.: 1993, ‘Lake water quality modeling for projected future climate scenarios’, J. Envirion. Qual. 22, 417–431.CrossRefGoogle Scholar
  48. Stefan, H. G., Hondzo, M., Fang, X., Eaton, J. G., and McCormick, J. H.: 1996, ‘Simulated long-term temperature and dissolved oxygen characteristics of lakes in north-central united states and associated fish habitat limits’, Limnol. Oceanogr. 41, 1124–1135.CrossRefGoogle Scholar
  49. Stefan, H. G. and Preud’homme, E. B. 1993, ‘Stream temperature estimation from air temperature’, Water Resour. Bull. 29, 27–45.Google Scholar
  50. Stefan, H. G. and Sinokrot, B. A.: 1993, ‘Projected global climate change impact on water temperatures in five north central US streams’, Clim. Change 24, 353–381.Google Scholar
  51. Thomann, R. V. and Mueller, J. A.: 1987, Principles of Surface Water Quality Modeling and Control, Harper and Rowe, New York, N.Y.Google Scholar
  52. Toon, W. M.: 1990, ‘Climate change and fish communities: A conceptual framework’, Trans. Am. Fish. Soc. 119, 337–352.Google Scholar
  53. Van Winkle, W., Rose, K. A., Shuter, B. J., Jager, H. I., and Holcomb, B. D.: 1997, ‘Effects of climatic temperature change on growth, survival, and reproduction of rainbow trout: predictions from a simulation model’, Can. J. Fish. Aqu. Sci. 54, 2526–2542.Google Scholar
  54. Vugts, H. F.: 1974, ‘Calculation of temperature variations of small mountain streams’, J. Hydrol. 23, 267–278.Google Scholar
  55. Webb, B. W. and Nobilis F.: 1997, ‘Long term perspective on the nature of the air-water temperature relationship: A case study’, Hydrol. Proc. 11, 137–147.Google Scholar
  56. Webb, B. W. and Zhang, Y.: 1997, ‘Spatial and seasonal variability in the river heat budget’, Hydrol. Proc. 11, 79–101.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Michale N. Gooseff
    • 1
  • Kenneth Strzepek
    • 2
  • Steven C. Chapra
    • 3
  1. 1.Department of Geology and Geological EngineeringColorado School of MinesGoldenU.S.A.
  2. 2.Department of Civil, Environmental, and Architectural EngineeringUniversity of ColoradoBoulderU.S.A.
  3. 3.Department of Civil and Environmental EngineeringTufts UniversityMedfordU.S.A.

Personalised recommendations