Climatic Change

, Volume 75, Issue 1–2, pp 111–149 | Cite as

How Much Warming are We Committed to and How Much can be Avoided?

  • Bill HareEmail author
  • Malte Meinshausen


This paper examines different concepts of a ‘warming commitment’ which is often used in various ways to describe or imply that a certain level of warming is irrevocably committed to over time frames such as the next 50 to 100 years, or longer. We review and quantify four different concepts, namely (1) a ‘constant emission warming commitment’, (2) a ‘present forcing warming commitment’, (3) a‘zero emission (geophysical) warming commitment’ and (4) a ‘feasible scenario warming commitment’. While a ‘feasible scenario warming commitment’ is probably the most relevant one for policy making, it depends centrally on key assumptions as to the technical, economic and political feasibility of future greenhouse gas emission reductions. This issue is of direct policy relevance when one considers that the 2002 global mean temperatures were 0.8± 0.2 C above the pre-industrial (1861–1890) mean and the European Union has a stated goal of limiting warming to 2 C above the pre-industrial mean: What is the risk that we are committed to overshoot 2 C? Using a simple climate model (MAGICC) for probabilistic computations based on the conventional IPCC uncertainty range for climate sensitivity (1.5 to 4.5 C), we found that (1) a constant emission scenario is virtually certain to overshoot 2 C with a central estimate of 2.0 C by 2100 (4.2 C by 2400). (2) For the present radiative forcing levels it seems unlikely that 2 C are overshoot. (central warming estimate 1.1 C by 2100 and 1.2 C by 2400 with ∼10% probability of overshooting 2 C). However, the risk of overshooting is increasing rapidly if radiative forcing is stabilized much above 400 ppm CO2 equivalence (1.95 W/m2) in the long-term. (3) From a geophysical point of view, if all human-induced emissions were ceased tomorrow, it seems ‘exceptionally unlikely’ that 2 C will be overshoot (central estimate: 0.7 C by 2100; 0.4 C by 2400). (4) Assuming future emissions according to the lower end of published mitigation scenarios (350 ppm CO2eq to 450 ppm CO2eq) provides the central temperature projections are 1.5 to 2.1 C by 2100 (1.5 to 2.0 C by 2400) with a risk of overshooting 2 C between 10 and 50% by 2100 and 1–32% in equilibrium. Furthermore, we quantify the ‘avoidable warming’ to be 0.16–0.26 C for every 100 GtC of avoided CO2 emissions – based on a range of published mitigation scenarios.


Emission Scenario Climate Policy Climate Sensitivity Geophysical Research Letter Mitigation Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alley, R. B.: 2003, ‘Palaeoclimatic insights into future climate challenges’, Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 361, 1831–1849.CrossRefGoogle Scholar
  2. Andronova, N. G. and Schlesinger, M. E.: 2001, ‘Objective estimation of the probability density function for climate sensitivity’, Journal of Geophysical Research-Atmospheres 106, 22605–22611.CrossRefGoogle Scholar
  3. Archer, D.: 2005, ‘Fate of fossil fuel CO2 in geologic time’, Journal of Geophysical Research-Oceans 110, C09S05, doi: 10.1029/2004JC002625.Google Scholar
  4. Archer, D. and Buffett, B.: 2005, ‘Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing’, Geochemistry Geophysics Geosystems 6.Google Scholar
  5. Archer, D., Khesghi, H., and Maier-Reimer, E.: 1998, ‘Dynamics of fossil fuel CO2 neutralization by marine CaCO3’, Global Biogeochemical Cycles 12, 259–276.CrossRefGoogle Scholar
  6. Archer, D., Kheshgi, H. S., and Maier-Reimer, E.: 1997, ‘Multiple timescales for neutralization of fossil fuel CO2’, Geophysical Research Letters 24, 405–408.CrossRefGoogle Scholar
  7. Azar, C., Lindgren, K., Larson, E., Möllersten, K., and Yand, J.: in press, ‘Carbon capture and storage from fossil fuels and biomass – Costs and potential role in stabilizing the atmosphere’, Climatic Change.Google Scholar
  8. Caldeira, K., Jain, A. K., and Hoffert, M. I.: 2003, ‘Climate Sensitivity Uncertainty and the Need for Energy Without CO2 Emission’, Science 299, 2052–2054.CrossRefGoogle Scholar
  9. Covey, C., Sloan, L. C., and Hoffert, M. I.: 1996, ‘Paleoclimate data constraints on climate sensitivity: The paleocalibration method’, Climatic Change 32, 165–184.CrossRefGoogle Scholar
  10. Cowling, S. A., Betts, R. A., Cox, P. M., Ettwein, V. J., Jones, C. D., Maslin, M. A., and Spall, S. A.: 2004, ‘Contrasting simulated past and future responses of the Amazonian forest to atmospheric change’, Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359, 539–547.CrossRefGoogle Scholar
  11. Cox, P. M., Betts, R. A., Collins, M., Harris, P., Huntingford, C., and Jones, C. D.: 2003, ‘Amazon dieback under climate-carbon cycle projections for the 21st century’. UK, Hadley Centre. Tecnhical Note 42Google Scholar
  12. Cubasch, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., Senior, C. A., Raper, S., and Yap, K. S.: 2001, ‘Projections of Future Climate Change’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.Google Scholar
  13. Ehhalt, D., Prather, M. J., Dentener, F., Derwent, R. G., Dlugokencky, E., Holland, E., Isaksen, I. S. A., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., and Wang, M.: 2001, ‘Atmospheric Chemistry and Greenhouse Gases’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.Google Scholar
  14. European Community: 1996, ‘1939th Council meeting Environment. Council conclusions 8518/96’. Luxembourg.Google Scholar
  15. Folland, C. K., Rayner, N. A., Brown, S. J., Smith, T. M., Shen, S. S. P., Parker, D. E., Macadam, I., Jones, P. D., Jones, R. N., Nicholls, N., and Sexton, D. M. H.: 2001, ‘Global temperature change and its uncertainties since 1861’, Geophysical Research Letters 28, 2621–2624.CrossRefGoogle Scholar
  16. Forest, C. E., Stone, P. H., Sokolov, A., Allen, M. R., and Webster, M. D.: 2002, ‘Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations’, Science 295, 113–117.CrossRefGoogle Scholar
  17. Foukal, P., North, G., and Wigley, T.: 2004, ‘CLIMATE: A Stellar View on Solar Variations and Climate’, Science 306, 68–69.CrossRefGoogle Scholar
  18. Graßl, H., Kokott, J., Kulessa, M., Luther, J., Nuscheler, F., Sauerborn, R., Schellnhuber, H.-J., Schubert, R., and Schulze, E.-D.: 2003, ‘Climate Protection Strategies for the 21st Century. Kyoto and Beyond.’ Berlin, German Advisory Council on Global Change (WBGU): 89.Google Scholar
  19. Gregory, J. M., Huybrechts, P., and Raper, S. C. B.: 2004, ‘Climatology: Threatened loss of the Greenland ice-sheet’, Nature 428, 616.CrossRefGoogle Scholar
  20. Gregory, J. M., Stouffer, R. J., Raper, S. C. B., Stott, P. A., and Rayner, N. A.: 2002, ‘An observationally based estimate of the climate sensitivity’, Journal of Climate 15, 3117–3121.CrossRefGoogle Scholar
  21. Hadley Centre: 2002, ‘Stabilisation and Commitment to Future Climate Change – Scientific Results from the Hadley Centre’. Bracknell, Met Office Hadley Centre: 12 available at Scholar
  22. Hadley Centre: 2003, ‘Climate Change – Observations and predictions – Recent research on climate change from the Hadley Centre’, Exeter, Met Office Hadley Centre: 16 available at
  23. Hannah, L., Midgley, G. F., Lovejoy, T., Bond, W. J., Bush, M., Lovett, J. C., Scott, D., and Woodward, F. I.: 2002, ‘Conservation of Biodiversity in a Changing Climate’, Conservation Biology 16, 264–268.CrossRefGoogle Scholar
  24. Hansen, J., Russell, G., Lacis, A., Fung, I., Rind, D., and Stone, P.: 1985, ‘Climate Response-Times – Dependence on Climate Sensitivity and Ocean Mixing’, Science 229, 857–859.CrossRefGoogle Scholar
  25. Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: 2000, ‘Global warming in the twenty-first century: An alternative scenario’, Proceedings of the National Academy of Sciences of the United States of America 97, 9875–9880.Google Scholar
  26. Harvey, L. D. D. and Kaufmann, R. K.: 2002, ‘Simultaneously constraining climate sensitivity and aerosol radiative forcing’, Journal of Climate 15, 2837–2861.CrossRefGoogle Scholar
  27. Haugan, P. M. and Joos, F.: 2004, ‘Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs’, Geophysical Research Letters 31.Google Scholar
  28. Hill, D. C., Allen, M. R., Gillet, N. P., Tett, S. F. B., Stott, P. A., Jones, G. S., Ingram, W. J., and Mitchell, J. F. B.: 2001, ‘Natural and anthropogenic causes of recent climate change’, in India, M. B. and Bonillo, D. L. (eds.), Detecting and Modelling Regional Climate Change, Springer-Verlag, Berlin/Heidelberg, Germany.Google Scholar
  29. Hoegh-Guldberg, O.: 1999, ‘Climate change, coral bleaching and the future of the world's coral reefs’, Marine and Freshwater Research 50, 839–866.CrossRefGoogle Scholar
  30. Hoffert, M. I. and Covey, C.: 1992, ‘Deriving Global Climate Sensitivity from Paleoclimate Reconstructions’, Nature 360, 573–576.CrossRefGoogle Scholar
  31. IPCC: 2001a, Climate Change 2001: Synthesis Report, Cambridge University Press, Cambridge, UK.Google Scholar
  32. IPCC: 2001b, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881.Google Scholar
  33. IPCC: 2004, ‘Workshop Report’, Workshop on Climate Sensitivity, IPCC Working Group I Technical Support Unit, École Normale Supérieure, Paris, France, pp. 177.Google Scholar
  34. Jones, C., Cox, P. M., Essery, R. L. H., Roberts, D. L., and Woodage, M. J.: 2003a, ‘Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols’, Geophysical Research Letters 30, 1479–1483.CrossRefGoogle Scholar
  35. Jones, C. D., Cox, P., and Huntingford, C.: 2003b, ‘Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature’, Tellus Series B-Chemical and Physical Meteorology 55, 642–648.CrossRefGoogle Scholar
  36. Jones, P. D. and Moberg, A.: 2003, ‘Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001’, Journal of Climate 16, 206–223.CrossRefGoogle Scholar
  37. Knutti, R., Stocker, T. F., Joos, F., and Plattner, G.-K.: 2002, ‘Constraints on radiative forcing and future climate change from observations and climate model ensembles’, Nature 416, 719–723.CrossRefGoogle Scholar
  38. Knutti, R., Stocker, T. F., Joos, F., and Plattner, G. K.: 2003, ‘Probabilistic climate change projections using neural networks’, Climate Dynamics 21, 257–272.CrossRefGoogle Scholar
  39. Lean, J., Beer, J., and Bradley, R. S.: 1995, ‘Reconstruction of solar irradience since 1610: Implications for climate change’, Geophysical Research Letters 22, 3195–3198.CrossRefGoogle Scholar
  40. Lorius, C., Jouzel, J., Raynaud, D., Hansen, J., and Letreut, H.: 1990, ‘The Ice-Core Record – Climate Sensitivity and Future Greenhouse Warming’, Nature 347, 139–145.CrossRefGoogle Scholar
  41. Manabe, S., Stouffer, R. J., Spelman, M. J., and Bryan, K.: 1991, ‘Transient responses of a coupled-ocean atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response’, Journal of Climate 4, 785–818.CrossRefGoogle Scholar
  42. Meehl, G. A., Washington, W. M., Collins, W. D., Arblaster, J. M., Hu, A. X., Buja, L. E., Strand, W. G., and Teng, H. Y.: 2005, ‘How much more global warming and sea level rise?’ Science 307, 1769–1772.CrossRefGoogle Scholar
  43. Meinshausen, M., Hare, B., Wigley, T. M. L., van Vuuren, D., den Elzen, M. G. J., and Swart, R.: in press, ‘Multi-gas emission pathways to meet climate targets’, Climatic Change 50.Google Scholar
  44. Midgley, G. F., Hannah, L., Millar, D., Rutherford, M. C., and Powrie, L. W.: 2002, ‘Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot’, Global Ecology and Biogeography 11, 445–452.CrossRefGoogle Scholar
  45. Morita, T., Nakicenovic, N., and Robinson, J.: 2000, ‘Overview of mitigation scenarios for global climate stabilization based on new IPCC emission scenarios (SRES)’, Environmental Economics and Policy Studies 3, 65–88.Google Scholar
  46. Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: 2004, ‘Quantification of modelling uncertainties in a large ensemble of climate change simulations’, Nature 430, 768–772.CrossRefGoogle Scholar
  47. Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: 1998, ‘New estimates of radiative forcing due to well mixed greenhouse gases’, Geophysical Research Letters 25, 2715–2718.CrossRefGoogle Scholar
  48. Nakicenovic, N. and Riahi, K.: 2003, ‘Model runs with MESSAGE in the Context of the Further Development of the Kyoto-Protocol’. Berlin, WBGU – German Advisory Council on Global Change: 54. Report-No.: WBGU II/2003 available at
  49. Nakicenovic, N. and Swart, R. (eds).: 2000, IPCC Special Report on Emissions Scenarios, Cambridge University Press, Cambridge, United Kingdom, 612.Google Scholar
  50. North, G. R. and Wu, Q.: 2001, ‘Detecting Climate Signals Using Space-Time EOF’, Journal of Climate 14, 1839–1863.CrossRefGoogle Scholar
  51. O'Neill, B. C. and Oppenheimer, M.: 2002, ‘CLIMATE CHANGE: Dangerous Climate Impacts and the Kyoto Protocol’, Science 296, 1971–1972.CrossRefGoogle Scholar
  52. Oppenheimer, M.: 1998, ‘Global warming and the stability of the West Antarctic Ice Sheet’, Nature 393, 325–332.CrossRefGoogle Scholar
  53. Oppenheimer, M. and Alley, R. B.: 2004, ‘The West Antarctic Ice Sheet and Long Term Climate Policy’, Climatic Change 64, 1–10.CrossRefGoogle Scholar
  54. Prentice, I. C., Farquhar, G., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quere, C., Scholes, R. J. and Wallace, D. W. R.: 2001, ‘The Carbon Cycle and Atmospheric Carbon Dioxide’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.Google Scholar
  55. Rahmstorf, S.: 1995, ‘Bifurcations of the Atlantic Thermohaline Circulation in Response to Changes in the Hydrological Cycle’, Nature 378, 145–149.CrossRefGoogle Scholar
  56. Rahmstorf, S.: 1996, ‘On the freshwater forcing and transport of the Atlantic thermohaline circulation’, Climate Dynamics 12, 799–811.CrossRefGoogle Scholar
  57. Ramanathan, V.: 1988, ‘The Greenhouse Theory of Climate Change – a Test by an Inadvertent Global Experiment’, Science 240, 293–299.CrossRefGoogle Scholar
  58. Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajiama, T., Shi, G. Y. and Solomon, S.: 2001, ‘Radiative Forcing of Climate Change’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.Google Scholar
  59. Raper, S. C. B., Gregory, J. M., and Osborn, T. J.: 2001, ‘Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results’, Climate Dynamics 17, 601–613.CrossRefGoogle Scholar
  60. Raper, S. C. B., Wigley, T. M. L., and Warrick, R. A.: 1996, ‘Global Sea-level Rise: Past and Future’, in Milliman, J. and Haq, B. U. (eds.), Sea-Level Rise and Coastal Subsidence: Causes, Consequences and Strategies, Kluwer, Dordrecht, Netherlands, pp. 11–45.Google Scholar
  61. Renssen, H., Beets, C. J., Fichefet, T., Goosse, H., and Kroon, D.: 2004, ‘Modeling the climate response to a massive methane release from gas hydrates’, Paleoceanography 19.Google Scholar
  62. Sato, M., Hansen, J., McCornick, M. P., and Pollack, J. B.: 1993, ‘Stratospheric aerosol optiocal depths’, Geophysical Research Letters 98, 10667–10678.Google Scholar
  63. Schmidt, G. A. and Shindell, D. T.: 2003, ‘Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates’, Paleoceanography 18.Google Scholar
  64. Schneider von Deimling, T., Held, H., Ganopolski, A., and Rahmstorf, S.: 2004, ‘Climate Sensitivity Range Derived from Large Ensemble Simulations of Glacial Climate Constrained by Proxy Data’, Workshop on Climate Sensitivity, IPCC, Paris, pp. 186.Google Scholar
  65. Stocker, T. F. and Wright, D. G.: 1991, ‘Rapid Transitions of the Ocean's Deep Circulation Induced by Changes in Surface Water Fluxes’, 351, 729–732.Google Scholar
  66. Stott, P. A., Jones, G. S., and Mitchell, J. F. B.: 2003, ‘Do models underestimate the solar contribution to recent climate change?’ Journal of Climate 16, 4079–4093.CrossRefGoogle Scholar
  67. Stott, P. A. and Kettleborough, J. A.: 2002, ‘Origins and estimates of uncertainty in predictions of twenty-first century temperature rise’, Nature 416, 723–726.CrossRefGoogle Scholar
  68. Stouffer, R. J.: 2004, ‘Time Scales of Climate Response’, Journal of Climate 17, 209–217.CrossRefGoogle Scholar
  69. Stouffer, R. J. and Manabe, S.: 1999, ‘Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase’, Journal of Climate 12, 2224–2237.CrossRefGoogle Scholar
  70. Streets, D. G., Jiang, K. J., Hu, X. L., Sinton, J. E., Zhang, X. Q., Xu, D. Y., Jacobson, M. Z., and Hansen, J. E.: 2001, ‘Climate change – Recent reductions in China's greenhouse gas emissions’, Science 294, 1835–1837.CrossRefGoogle Scholar
  71. Swart, R., Mitchell, J., Morita, T., and Raper, S.: 2002, ‘Stabilisation scenarios for climate impact assessment’, Global Environmental Change 12, 155–165.CrossRefGoogle Scholar
  72. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L. and Williams, S. E.: 2004a, ‘Extinction risk from climate change’, Nature 427, 145–148.CrossRefGoogle Scholar
  73. Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuna, C., Akins, T., Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S., Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J., Swift, R., Yungel, J., and Zwally, J.: 2004b, ‘Accelerated Sea-Level Rise from West Antarctica’, Science 306, 255–258.CrossRefGoogle Scholar
  74. Watterson, I. G.: 2003, ‘Effects of a dynamic ocean on simulated climate sensitivity to greenhouse gases’, Climate Dynamics 21, 197–209.CrossRefGoogle Scholar
  75. Wetherald, R. T., Stouffer, R. J., and Dixon, K. W.: 2001, ‘Committed warming and its implications for climate change’, Geophysical Research Letters 28, 1535–1538.CrossRefGoogle Scholar
  76. Wigley, T. M. L.: 1991, ‘Could reducing fossil-fuel emissions cause global warming?’ Nature 349, 503–506.CrossRefGoogle Scholar
  77. Wigley, T. M. L.: 2000, ‘Stabilization of CO2 concentration levels’, in Wigley, T. M. L. and Schimel, D. (eds.), The Carbon Cycle, Cambridge University Press, Cambridge, UK, pp. 258–276.Google Scholar
  78. Wigley, T. M. L.: 2003, ‘MAGICC/SCENGEN 4.1: Technical Manual’. Boulder, Colorado, UCAR – Climate and Global Dynamics Division available at
  79. Wigley, T. M. L.: 2005, ‘The climate change commitment’, Science 307, 1766–1769.CrossRefGoogle Scholar
  80. Wigley, T. M. L. and Raper, S. C. B.: 1992, ‘Implications for climate and sea level of revised IPCC emissions scenarios’, Nature 357, 293–300.CrossRefGoogle Scholar
  81. Wigley, T. M. L. and Raper, S. C. B.: 2001, ‘Interpretation of high projections for global-mean warming’, Science 293, 451–454.CrossRefGoogle Scholar
  82. Wigley, T. M. L. and Raper, S. C. B.: 2002, ‘Reasons for larger warming projections in the IPCC Third Assessment Report’, Journal of Climate 15, 2945–2952.Google Scholar
  83. Wigley, T. M. L., Smith, S. J., and Prather, M. J.: 2002, ‘Radiative forcing due to reactive gas emissions’, Journal of Climate 15, 2690–2696.CrossRefGoogle Scholar
  84. Williams, S. E., Bolitho, E. E., and Fox, S.: 2003, ‘Climate change in Australian tropical rainforests: an impending environmental catastrophe’, Proceedings of the Royal Society of London Series B-Biological Sciences 270, 1887–1892.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Potsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  2. 2.Department of Environmental SciencesSwiss Federal Institute of Technology (ETH Zurich), Environmental PhysicsZurichSwitzerland
  3. 3.National Center for Atmospheric Research (NCAR)BoulderUSA

Personalised recommendations