Climatic Change

, Volume 75, Issue 1–2, pp 151–194 | Cite as

Multi-gas Emissions Pathways to Meet Climate Targets

  • Malte MeinshausenEmail author
  • Bill Hare
  • Tom M. M. Wigley
  • Detlef Van Vuuren
  • Michel G. J. Den Elzen
  • Rob Swart


So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method ‘Equal Quantile Walk’ (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by ‘walking along equal quantile paths’ of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See for EQW-software and data.


Climate Sensitivity Mitigation Scenario Emission Pathway Climate Target Simple Climate Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. L., Charlson, R. J., Schwartz, S. E., Knutti, R., Boucher, O., Rodhe, H., and Heintzenberg, J.: 2003, ‘Climate forcing by aerosols a hazy picture’, Science 300, 1103–1104.CrossRefGoogle Scholar
  2. Andronova, N. G. and Schlesinger, M. E.: 2001, ‘Objective estimation of the probability density function for climate sensitivity’, Journal of Geophysical Research-Atmospheres 106, 22605–22611.CrossRefGoogle Scholar
  3. Arnell, N. W., Cannell, M. G. R., Hulme, M., Kovats, R. S., Mitchell, J., Nicholls, R. J., Parry, M. L., Livermore, M. T. J., and White, A.: 2002, ‘The consequences of CO2 stabilistation for the impacts of climate change’, Climatic Change 53, 413–446.CrossRefGoogle Scholar
  4. Arrow, K.: 1962, ‘The Economic Implications of Learning-by-Doing’, Review of Economic Studies 29, 155–73.CrossRefGoogle Scholar
  5. Azar, C.: 1998, ‘The timing of CO2 emissions reductions: the debate revisited’, International Journal of Environment and Pollution 10, 508–521.Google Scholar
  6. Azar, C. and Rodhe, H.: 1997, ‘Targets for stabilization of atmospheric CO2’, Science 276, 1818–1819.CrossRefGoogle Scholar
  7. Bowman, A.W. and Azzalini, A.: 1997, Applied Smoothing Techniques for Data Analysis, Oxford University Press, Oxford, UK.Google Scholar
  8. Cai, W. J., Whetton, P. H., and Karoly, D. J.: 2003, ‘The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2’, Journal of Climate 16, 1525–1538.Google Scholar
  9. Carvalho, G., Moutinho, P., Nepstad, D., Mattos, L., and Santilli, M.: 2004, ‘An amazon perspective on the forest-climate connection: opportunity for climate mitigation, conservation and development?’ Environment, Development and Sustainability 6, 163–174.CrossRefGoogle Scholar
  10. Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., Qin, D., and Woodworth, P. L.: 2001, ‘Changes in sea level’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C.A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.Google Scholar
  11. Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: 2001, ‘Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models’, Global Change Biology 7, 357–373.CrossRefGoogle Scholar
  12. Cubasch, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., Senior, C. A., Raper, S., and Yap, K. S.: 2001, ‘Projections of future climate change’, in Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.Google Scholar
  13. Dai, A. G., Meehl, G. A., Washington, W. M., Wigley, T. M. L., and Arblaster, J. M.: 2001a, ‘Ensemble simulation of twenty-first century climate changes: Business-as-usual versus CO2 stabilization’, Bulletin of the American Meteorological Society 82, 2377–2388.CrossRefGoogle Scholar
  14. Dai, A. G., Wigley, T. M. L., Meehl, G. A., and Washington, W. M.: 2001b, ‘Effects of stabilizing atmospheric CO2 on global climate in the next two centuries’, Geophysical Research Letters 28, 4511–4514.CrossRefGoogle Scholar
  15. de Jager, D., Hendriks, C. M. A., Byers, C., van Brummelen, M., Petersdorff, C., Struker, A. H. M., Blok, K., Oonk, J., Gerbens, S., and Zeeman, G.: 2001, ‘Emission reduction of non-CO2 greeenhouse gases’. Bilthoven, Netherlands, Dutch National Research Programme on Global Air Pollution and Climate Change. Report-No.: 953219, available at
  16. de la Chesnaye, F. C.: 2003, ‘Overview of modelling results of multi-gas scenarios for EMF-21. Presentation at EMF-21 workshop’. Stanford, USA, Energy Modeling Forum, EMF21.Google Scholar
  17. den Elzen, M. G. J.: 2002, ‘Exploring climate regimes for differentiation of future commitments to stabilise greenhouse gas concentrations’, Integrated Assessment 3, 343–359.CrossRefGoogle Scholar
  18. den Elzen, M. G. J., and Lucas, P.: 2005, ‘The FAIR model: a tool to analyse environmental and cost implications of climate regimes’, Environmental Modeling {&} Assessment 10, 115–134.CrossRefGoogle Scholar
  19. den Elzen, M. G. J., Lucas, P., and van Vuuren, D.: 2005, ‘Abatement costs of post-Kyoto climate regimes’, Energy Policy 33, 2138–2151.CrossRefGoogle Scholar
  20. den Elzen, M. G. J. and Meinshausen, M.: 2005, ‘Meeting the EU 2 C climate target: global and regional emission implications’. Bilthoven, Netherlands, RIVM: 44. RIVM report 728001031/2005Google Scholar
  21. Ehhalt, D., Prather, M. J., Dentener, F., Derwent, R. G., Dlugokencky, E., Holland, E., Isaksen, I. S. A., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., and Wang, M.: 2001, ‘Atmospheric chemistry and greenhouse gases’, in Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.Google Scholar
  22. Eickhout, B., den Elzen, M. G. J., and van Vuuren, D.: 2003, ‘Multi-gas emission profiles for stabilising greenhouse gas concentrations’. Bilthoven, BA, RIVM. RIVM Report 728001026, available at
  23. Enting, I. G., Wigley, T. M. L., and Heimann, M.: 1994, ‘Future emissions and concentrations of carbon dioxide: Key ocean/atmosphere/land analyses’, CSIRO Division of Atmospheric Research. Research Technical paper no. 31, available at
  24. Fearnside, P. M.: 2000, ‘Global warming and tropical land-use change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation’, Climatic Change 46, 115–158.CrossRefGoogle Scholar
  25. Forest, C. E., Stone, P. H., Sokolov, A., Allen, M. R., and Webster, M. D.: 2002, ‘Quantifying uncertainties in climate system properties with the use of recent climate observations’, Science 295, 113–117.CrossRefGoogle Scholar
  26. Fuglestvedt, J. S., Berntsen, T. K., Godal, O., Sausen, R., Shine, K. P., and Skodvin, T.: 2003, ‘Metrics of climate change: Assessing radiative forcing and emission indices’, Climatic Change 58, 267–331.CrossRefGoogle Scholar
  27. Graßl, H., Kokott, J., Kulessa, M., Luther, J., Nuscheler, F., Sauerborn, R., Schellnhuber, H.-J.}, Schubert, R., and Schulze, E.-D.: 2003, ‘Climate Protection Strategies for the 21st Century. Kyoto and Beyond.’ Berlin, German Advisory Council on Global Change (WBGU), 89.Google Scholar
  28. Gregory, J. M., Stouffer, R. J., Raper, S. C. B., Stott, P. A., and Rayner, N. A.: 2002, ‘An observationally based estimate of the climate sensitivity’, Journal of Climate 15, 3117-3121.CrossRefGoogle Scholar
  29. Gritsevskyi, A. and Nakicenovi, N.: 2000, ‘Modeling uncertainty of induced technological change’, Energy Policy 28, 907–921.CrossRefGoogle Scholar
  30. Grubb, M. and Ulph, D.: 2002, ‘Energy, the environment, and innovation’, Oxford Review of Economic Policy 18, 92–106.CrossRefGoogle Scholar
  31. Grubler, A. and Nakicenovic, N.: 2001, ‘Identifying dangers in an uncertain climate’, Nature 412, 15–15.CrossRefGoogle Scholar
  32. Ha-Duong, M., Grubb, M., and Hourcade, J.: 1997, ‘Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement’, Nature 390, 270–273.CrossRefGoogle Scholar
  33. Hansen, J.: 2003, ‘Can we defuse the Global Warming Time Bomb?’ Council on Environmental Quality, Washington: 32.Google Scholar
  34. Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: 2000, ‘Global warming in the twenty-first century: An alternative scenario’, Proceedings of the National Academy of Sciences of the United States of America 97, 9875–9880.CrossRefGoogle Scholar
  35. Hare, B. and Meinshausen, M.: 2004, ‘How much warming are we committed to and how much can be avoided?’ {PIK Report}. Potsdam, Potsdam Institute for Climate Impact Research: 49. No. 93
  36. Harvey, L. D. D.: 2004, ‘Declining temporal effectiveness of carbon sequestration: Implications for compliance with the United National Framework Convention on Climate Change’, Climatic Change 63, 259–290.CrossRefGoogle Scholar
  37. Hill, D. C., Allen, M. R., Gillet, N. P., Tett, S. F. B., Stott, P. A., Jones, G. S., Ingram, W. J., and Mitchell, J. F. B.: 2001, ‘Natural and anthropogenic causes of recent climate change’, in India, M. B. and Bonillo, D. L. (eds.), Detecting and Modelling Regional Climate Change, Springer-Verlag, Berlin/Heidelberg, Germany.Google Scholar
  38. Höhne, N., Galleguillos, C., Blok, K., Harnisch, J., and Phylipsen, D.: 2003, ‘Evolution of commitments under the UNFCCC: Involving newly industrialized economies and developing countries.’ Berlin, Federal Ministry of the Environment, Nature Conservation and Nuclear Safety: 87. Report-No.: UBA-FB 000412.Google Scholar
  39. Houghton, J., Meira Filho, L., Bruce, J., Lee, H., Callander, B., Haites, E., Harris, N., and Maskell, K., eds: 1994, Climate Change 1994: Radiative Forcing of climate change and the evaluation of the 1992 IPCC IS92 emissions scenario, Cambridge University Press, Cambridge.Google Scholar
  40. Houghton, R. A.: 1999, ‘The annual net flux of carbon to the atmosphere from changes in land use 1850–1990’, Tellus Series B-Chemical and Physical Meteorology 51, 298–313.CrossRefGoogle Scholar
  41. Houghton, R. A. and Hackler, J. L.: 2002, ‘Carbon Flux to the Atmosphere from Land-Use Changes.’ A Compendium of Data on Global Change., Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.Google Scholar
  42. IPCC: 1996, Climate Change 1995: the Science of Climate Change. Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, p. 572.Google Scholar
  43. IPCC: 2001, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881.Google Scholar
  44. Jiang, K. J., Morita, T., Masui, T., and Matsuoka, Y.: 2000, ‘Global long-term greenhouse gas mitigation emission scenarios based on AIM’, Environmental Economics and Policy Studies 3, 239-254.Google Scholar
  45. Kirschbaum, M. U. F.: 2003, ‘Can Trees Buy Time? An Assessment of the Role of Vegetation Sinks as Part of the Global Carbon Cycle’, Climatic Change 58, 47–71.CrossRefGoogle Scholar
  46. Knutti, R., Stocker, T. F., Joos, F., and Plattner, G. K.: 2003, ‘Probabilistic climate change projections using neural networks’, Climate Dynamics 21, 257–272.CrossRefGoogle Scholar
  47. Lashof, D. and Hare, B.: 1999, ‘The role of biotic carbon stocks in stabilizing greenhouse gas concentrations at safe levels’, Environmental Science {&} Policy 2, 101–109.CrossRefGoogle Scholar
  48. Lean, J., Beer, J., and Bradley, R.S.: 1995, ‘Reconstruction of solar irradience since 1610: Implications for climate change’, Geophysical Research Letters 22, 3195–3198.CrossRefGoogle Scholar
  49. Leggett, J., Pepper, W., and Swart, R.: 1992, ‘Emission Scenarios for IPCC: An Update’, in Houghton, J., Callander, B., and Varney, S. (eds.), Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 69–96.Google Scholar
  50. Manne, A. S. and Richels, R. G. U.: 2001, ‘An alternative approach to establishing trade-offs among greenhouse gases’, Nature 410, 675–677.CrossRefGoogle Scholar
  51. Meinshausen, M.: 2005, ‘What does a 2°C target mean for greenhouse gas concentration? A brief analysis based on multi-gas emission pathways and several climate sensitivity uncertainty estimates’, in Avoiding Dangerous Climate Change, J.S. Schellnhuber, W. Gamer, N. Nakicenovic, T.M.L. Wigley, and G. Yohe (Eds.), Cambridge Univ. PressGoogle Scholar
  52. Mitchell, J. F. B., Johns, T. C., Ingram, W. J., and Lowe, J. A.: 2000, ‘The effect of stabilising atmospheric carbon dioxide concentrations on global and regional climate change’, Geophysical Research Letters 27, 2977–2980.CrossRefGoogle Scholar
  53. Morita, T., Nakicenovic, N., and Robinson, J.: 2000, ‘Overview of mitigation scenarios for global climate stabilization based on new IPCC emission scenarios (SRES)’, Environmental Economics and Policy Studies 3, 65–88.Google Scholar
  54. Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: 2004, ‘Quantification of modelling uncertainties in a large ensemble of climate change simulations’, Nature 430, 768–772.CrossRefGoogle Scholar
  55. Nakicenovic, N., and Riahi, K.: 2003, ‘Model runs with MESSAGE in the Context of the Further Development of the Kyoto-Protocol’. Berlin, WBGU-German Advisory Council on Global Change: 54. Report-No.: WBGU II/2003 available at
  56. Nakicenovic, N. and Swart, R., eds: 2000, IPCC Special Report on Emissions Scenarios, Cambridge University Press, Cambridge, United Kingdom, 612.Google Scholar
  57. Nakicenovic, N., Victor, N., and Morita, T.: 1998, ‘Emissions scenarios database and review of scenarios’, Mitigation and Adaptation Strategies for Global Change 3, 95–120.CrossRefGoogle Scholar
  58. North, G. R., and Wu, Q.: 2001, ‘Detecting Climate Signals Using Space-Time EOF’, Journal of Climate 14, 1839–1863.CrossRefGoogle Scholar
  59. Oppenheimer, M.: 1998, ‘Global warming and the stability of the West Antarctic Ice Sheet’, Nature 393, 325–332.CrossRefGoogle Scholar
  60. Oppenheimer, M. and Alley, R. B.: 2004, ‘The west antarctic ice sheet and long term climate policy’, Climatic Change 64, 1–10.CrossRefGoogle Scholar
  61. Ottinger-Schaefer, Au: Please update. D., Godwin, D., and Harnisch, J.: in press, ‘Estimating future emissions and potential reductions of HFCs, PFCs, and SF6’, Energy Journal.Google Scholar
  62. Prentice, I. C., Farquhar, G., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quere, C., Scholes, R. J., and Wallace, D. W. R.: 2001, ‘The carbon cycle and atmospheric carbon dioxide’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.Google Scholar
  63. Pretty, J. N., Ball, A. S., Xiaoyun, L., and Ravindranath, N. H.: 2002, ‘The role of sustainable agriculture and renewable-resource management in reducing greenhouse-gas emissions and increasing sinks in China and India’, Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 360, 1741–1761.CrossRefGoogle Scholar
  64. Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajiama, T., Shi, G. Y., and Solomon, S.: 2001, ‘Radiative forcing of climate change’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK, pp. 892.Google Scholar
  65. Raper, S. C. B., Gregory, J. M., and Osborn, T. J.: 2001, ‘Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results’, Climate Dynamics 17, 601-613.CrossRefGoogle Scholar
  66. Raper, S. C. B., Wigley, T. M. L., and Warrick, R. A.: 1996, ‘Global sea-level rise: Past and future’, in Milliman, J. and Haq, B. U. (eds.), Sea-Level Rise and Coastal Subsidence: Causes, Consequences and Strategies, Kluwer, Dordrecht, Netherlands, pp. 11–45.Google Scholar
  67. Reilly, J., Prinn, R., Harnisch, J., Fitzmaurice, J., Jacoby, H., Kicklighter, D., Melillo, J., Stone, P., Sokolov, A. and Wang, C.: 1999, ‘Multi-gas assessment of the Kyoto protocol’, Nature 401, 549–555.CrossRefGoogle Scholar
  68. Sato, M., Hansen, J., McCornick, M. P., and Pollack, J. B.: 1993, ‘Stratospheric aerosol optiocal depths’, Geophysical Research Letters 98, 10667–10678.Google Scholar
  69. Schimel, D., Grubb, M., Joos, F., Kaufmann, R., Moss, R., Ogana, W., Richels, R., and Wigley, T. M. L.: 1997, ‘Stabilization of Atmospheric Greenhouse Gases: Physical, Biological and Socio-Economic Implications’. Geneva, IPCC: 56. Technical Paper No.3, available at
  70. Smith, J. and Wigley, T.: 2000a, ‘Global warming potentials: 2. Accuracy’, Climatic Change 44, 459–469.CrossRefGoogle Scholar
  71. Smith, S. and Wigley, T.: 2000b, ‘Global warming potentials: 1. Climatic implications of emission reductions’, Climatic Change 44, 445–457.CrossRefGoogle Scholar
  72. Stott, P. A., Jones, G. S., and Mitchell, J. F. B.: 2003, ‘Do models underestimate the solar contribution to recent climate change?’ Journal of Climate 16, 4079–4093.CrossRefGoogle Scholar
  73. Swart, R., Mitchell, J., Morita, T., and Raper, S.: 2002, ‘Stabilisation scenarios for climate impact assessment’, Global Environmental Change 12, 155–165.CrossRefGoogle Scholar
  74. Sygna, L., Fuglestvedt, J., and Aaheim, H. A.: 2002, ‘The Adequacy of GWPs as indicators of damage costs incurred by global warming’, Mitigation and Adaptation Strategies for Global Change 7, 45–63.CrossRefGoogle Scholar
  75. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L.J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., and Williams, S. E.: 2004, ‘Extinction risk from climate change’, Nature 427, 145–148.CrossRefGoogle Scholar
  76. USEPA: 2003, ‘International Analysis of Methane and Nitrous Oxide Abatement Opportunities. Report to the Energy Modeling Forum, Working Group 21’. Washington, U.S. Environmental Protection Agency
  77. van Vuuren, D., den Elzen, M. G. J., Berk, M. M., Lucas, P., Eickhout, B., Eerens, H., and Oostenrijk, R.: 2003, ‘Regional Costs and Benefits of Alternative Post-Kyoto climate regimes’. Bilthoven, RIVM: 117. Report-No: 728001025/2003, available at
  78. van Vuuren, D. and O'Neill, B.: submitted, ‘The consistency of IPCC's SRES scenarios to 1990–2000 trends and recent projections’, Climatic Change, 66.Google Scholar
  79. Wassmann, R., Neue, H. U., Ladha, J. K., and Aulakh, M. S.: 2004, ‘Mitigating greenhouse gas emissions from rice-wheat cropping systems in Asia’, Environment, Development and Sustainability 6, 65–90.CrossRefGoogle Scholar
  80. Wigley, T. M. L.: 1991, ‘Could reducing fossil-fuel emissions cause global warming?’ Nature 349, 503–506.CrossRefGoogle Scholar
  81. Wigley, T. M. L.: 1995, ‘Global mean temperature and sea-level consequences of greenhouse-gas concentration stabilization’, Geophysical Research Letters 22, 45–48.CrossRefGoogle Scholar
  82. Wigley, T. M. L.: 2000, ‘Stabilization of CO2 concentration levels’, in Wigley, T. M. L. and Schimel, D. (eds.), The Carbon Cycle, Cambridge University Press, Cambridge, UK, pp. 258–276.Google Scholar
  83. Wigley, T. M. L.: 2003a, ‘MAGICC/SCENGEN 4.1: Technical Manual’. Boulder, Colorado, UCAR-Climate and Global Dynamics Division available at
  84. Wigley, T. M. L.: 2003b, ‘Modelling climate change under no-policy and policy emissions pathways’. OECD Workshop on the Benefits of Climate Policy: Improving Information for Policy Makers. Paris, France, OECD: 32. OECD: ENV/EPOC/GSP(2003)7/FINALGoogle Scholar
  85. Wigley, T. M. L. and Raper, S. C. B.: 1992, ‘Implications for climate and sea level of revised IPCC emissions scenarios’, Nature 357, 293–300.CrossRefGoogle Scholar
  86. Wigley, T. M. L. and Raper, S. C. B.: 2001, ‘Interpretation of high projections for global-mean warming’, Science 293, 451–454.CrossRefGoogle Scholar
  87. Wigley, T. M. L. and Raper, S. C. B.: 2002, ‘Reasons for larger warming projections in the IPCC Third Assessment Report’, Journal of Climate 15, 2945–2952.CrossRefGoogle Scholar
  88. Wigley, T. M. L., Richels, R., and Edmonds, J. A.: 1996, ‘Economic and environmental choices in the stabilization of atmospheric CO2 emissions’, Nature 379, 240–243.CrossRefGoogle Scholar
  89. Wigley, T. M. L., Smith, S. J., and Prather, M. J.: 2002, ‘Radiative forcing due to reactive gas emissions’, Journal of Climate 15, 2690–2696.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Malte Meinshausen
    • 1
    • 3
    Email author
  • Bill Hare
    • 2
  • Tom M. M. Wigley
    • 3
  • Detlef Van Vuuren
    • 4
  • Michel G. J. Den Elzen
    • 4
  • Rob Swart
    • 5
  1. 1.Environmental Physics, Environmental Science DepartmentSwiss Federal Institute of Technology (ETH Zurich)ZurichSwitzerland
  2. 2.Potsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  3. 3.National Center for Atmospheric Research, NCARBoulderUnited States
  4. 4.Netherlands Environmental Assessment Agency (MNP)BilthovenThe Netherlands
  5. 5.EEA European Topic Center for Air and Climate Change (ETC/ACC), MNPBilthovenThe Netherlands

Personalised recommendations