Climatic Change

, Volume 74, Issue 1–3, pp 97–122 | Cite as

Terrestrial biosphere carbon storage under alternative climate projections

  • Sibyll SchaphoffEmail author
  • Wolfgang Lucht
  • Dieter Gerten
  • Stephen Sitch
  • Wolfgang Cramer
  • I. Colin Prentice


This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from −106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa.


Soil Respiration Soil Carbon Carbon Storage Gross Primary Production Terrestrial Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amthor, J. S.: 1995, ‘Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle’, Global Change Biology 1, 243–274.CrossRefGoogle Scholar
  2. Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D.: 2004, ‘The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrase and forest dieback under global climate warming’, Theor. Appl. Climatol. 78, 157–175.CrossRefGoogle Scholar
  3. Bopp, L.; Le Quéré, C., Heimann, M., Manning, A. C. and Monfray, P.: 2002, ‘Climate-induced oceanic Oxygen fluxes: implications for the contemporary carbon budget’, Global Biogeochemical Cycles 16(2), 1022, doi: 10.1029/2001GB001445.Google Scholar
  4. Bopp, L.; Le Quéré, C., Heimann, M., Manning, A. C. and Monfray, P.: 2002, ‘Climate-induced oceanic Oxygen fluxes: implications for the contemporary carbon budget’, Global Biogeochemical Cycles 16(2), 1022, doi: 10.1029/2001GB001445.Google Scholar
  5. Cao, M. K. and Woodward, F. I.: 1998, ‘Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their response to climatic change’, Global Change Biology 4, 185-198.CrossRefGoogle Scholar
  6. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: 2000, ‘Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model’, Nature 408, 184–187.CrossRefGoogle Scholar
  7. Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D.: 2004, ‘Amazonian forest dieback under climate-carbon cycle procetions for the 21st century’, Theor. Appl. Climatol. 78, 137–156.CrossRefGoogle Scholar
  8. Collatz, G., Ribas-Carbo, M., and Berry, J.: 1992, ‘Coupled photosynthesis-stomatal conductance model for leaves of C4 plants’, Australian Journal of Plant Physiology 19, 519–538.CrossRefGoogle Scholar
  9. Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: 2001, ‘Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models’, Global Change Biology 7, 357–373.CrossRefGoogle Scholar
  10. Cramer, W., Kicklighter, D. W., Bondeau, A., Moore III, B., Churkina, G., Nemry, B., Ruimy, A., Schloss, A. L., and participants of the Potsdam NPP model intercomparison: 1999, ‘Comparing global models of terrestrial net primary productivity (NPP): Overview and key results’, Global Change Biology 5(Suppl 1), 1–15.Google Scholar
  11. DeLucia, E. H., Hamilton, J. G., Naidu, S. L., Thomas, R. B., Andrews, J. A., Finzi, A., Lavine, M., Matamala, R., Mohan, J. E., Hendrey, G. R., and Schlesinger, W. H.: 1999, ‘Net primary production of a forest ecosystem with experimental CO2 enrichment’, Science 284, 1177–1179.CrossRefGoogle Scholar
  12. Dufresne, J. L., Friedlingstein, P., Berthelot, M., Bopp, L., Ciais, P., Fairhead, L., Treut, Le H., and Monfray, P.: 2002, ‘On the magnitude of positive feedback between future climate change and the carbon cycle’, Geophysical Research Letters 29(10), 1405, 10.1029/2001GL013777.CrossRefGoogle Scholar
  13. Emori, S., Nozawa, T., Abe-Ouchi, A., Numaguti, A., and Kimoto, M.: 1999, ‘Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulphate aerosol scattering’, Journal of the Meteorological Society of Japan 77, 1299–1307.Google Scholar
  14. Fang, C., Smith, P. Moncrieff, J. B., and Smith, J. U.: 2005, ‘Similar response of labile and resistant soil organic matter pools to changes in temperature’, Nature 433, 57–59.CrossRefGoogle Scholar
  15. Farquhar, G. D., Caemmerer, S. v., and Berry, J. A.: 1980, ‘A biochemical model of Photosynthetic CO2 Assimilation in leaves of C3 Species’, Planta 149(2), 78–90.CrossRefGoogle Scholar
  16. Field, C., Jackson, R., and Mooney, H.: 1995, ‘Stomatal responses to increased CO2: Implications from the plant to the global scale’, Plant, Cell and Environment 18, 1214–1255.CrossRefGoogle Scholar
  17. Flato, G. M. and Boer, G. J.: 2001, ‘Warming asymmetry in climate change simulations’, Geophysical Research Letters 28, 195–198.CrossRefGoogle Scholar
  18. Foley, J. A.: 1995, ‘An equilibrium model of the terrestrial carbon budget’, Tellus 47B, 310–319.Google Scholar
  19. Friedlingstein, P., Bopp, l., Ciais, p., Dufresne, J., Fairhead, L., LeTreut, H., Monfray, P., and Orr, J.: 2001, ‘Positive feedback between future climate change and the carbon cycle’, Geophysical Research Letters 28(8), 1543–1546.CrossRefGoogle Scholar
  20. Friedlingstein, P., Dufresne, J.-L., Cox, P. M., and Rayner, P.: 2003, ‘How positive is the feedback between climate change and the carbon cycle?’, Tellus 55B, 692–700.Google Scholar
  21. Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: 2004, ‘Terrestrial vegetation and water balance: Hydrological evaluation of a dynamic global vegetation model’, Journal of Hydrology 286, 249–270.CrossRefGoogle Scholar
  22. Gordon, C., Cooper, C., Senior, C. A., Banks, H. T., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: 2000, ‘The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments’, Climate Dynamics 16, 147–168.CrossRefGoogle Scholar
  23. Guo, L. B. and Gifford, R. M.: 2002, ‘Soil carbon stocks and land use change: A meta analysis’, Global Change Biology 8, 345–360.CrossRefGoogle Scholar
  24. Haxeltine, A. and Prentice, I. C.: 1996a, ‘A general model for the light-use efficiency of primary production’, Functional Ecology 10, 551–561.CrossRefGoogle Scholar
  25. Haxeltine, A. and Prentice, I. C.: 1996b, ‘BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types’, Global Biogeochemical Cycles 10, 693–709.CrossRefGoogle Scholar
  26. Hetherington, A. M. and Woodward, F. I.: 2003, ‘The role of stomata in sensing and driving environmental change’, Nature 424, 901–908.CrossRefGoogle Scholar
  27. Hirst, A. C., Gordon, H. B., and O'Farrell, S. P.: 1996, ‘Global warming in a coupled climate model including oceanic eddy-induced advection’, Geophysical Research Letters 23, 3361–3364.CrossRefGoogle Scholar
  28. Hobbie, S. E., Schimel, J. P., Trumbore, S. E., Randerson, J. R.: 2000, Controls over carbon storage and turnover in high-latitude soils. Global Change Biology 6(Suppl 1), 196–210.CrossRefGoogle Scholar
  29. Houghton, J. T., Callander, B. A., and Varney, S. K. (eds): 1992, The Supplementary Report to the IPCC Scientific Assessment, Climate Change 1992 Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  30. House, J. I., Prentice, I. C., and Le Quérè, C.: 2002, ‘Maximum impacts of future reforestation or deforestation on atmospheric CO2’, Global Change Biology 8, 1047–1052.CrossRefGoogle Scholar
  31. House, J. I., Prentice, I. C., Ramankutty, N., Houghton, R. A., and Heimann, M.: 2003, ‘Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks’, Tellus 55B, 345-363.Google Scholar
  32. Hungate, B. A., Dukes, J. S., Shaw, R., Luo, Y., and Field, C. B.: 2003, ‘Nitrogen and Climate Change’, Nature 302, 1512–1513.Google Scholar
  33. The Intergovernmental Panel on Climate Change (IPCC): 2001, in Climate Change 2001: The Scientific Basis, Contribution of the Working Group I to the Third Assessment Report, Cambridge University Press, UK.Google Scholar
  34. Jones, C. D., Cox, P. M., Essery, R. L. H., Roberts, D. L., and Woodage, M. J.: 2003, ‘Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols’, Geophysical Research Letters 30(9), 1479, doi:10.1029/2003GL016867.CrossRefGoogle Scholar
  35. Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K., Gerber, S., and Hasselmann, K.: 2001, ‘Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios’, Global Biogeochemical Cycles 15, 891-907.CrossRefGoogle Scholar
  36. Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A.: 2005, ‘Long-term sensitivity of soil carbon turnover to warming’, Nature 433, 298–301.CrossRefGoogle Scholar
  37. Lloyd, J. and Taylor, J. A.: 1994, ‘On the temperature dependence of soil respiration’, Functional ecology 8, 315–323CrossRefGoogle Scholar
  38. Lucht, W., Prentice, I. C., Myneni, R. B., Sitch, S., Friedlingstein, P., Cramer, W., Bousquet, P., Buermann, W., and Smith, B.: 2002, ‘Climatic control of the high-latitude vegetation greening trend and Pinatubo effect’, Science 296, 1687–1689.CrossRefGoogle Scholar
  39. McGuire, A. D., Clein, J. S., Melillo, J. M., Kicklighter, D. W., Meier, R. A., Vorosmarty, C. J., and Serreze, M. C.: 2000, ‘Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate’, Global Change Biology 6, 141–159.CrossRefGoogle Scholar
  40. McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore III, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: 2001, ‘Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models’, Global Biogeochemical Cycles 15, 183–206.CrossRefGoogle Scholar
  41. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: 1997, ‘Increased plant growth in the northern high latitudes from 1981–1991’, Nature 386, 698–702.CrossRefGoogle Scholar
  42. Nakicenovic, N. and Swart, R. (eds.): 2000, Special Report on Emissions Scenarios, Cambridge University Press.Google Scholar
  43. Neilson, R. P.: 1995, ‘A model for predicting continental-scale vegetation distribution and water balance’, Ecological Applications 5, 362–386.CrossRefGoogle Scholar
  44. Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.: 2003, ‘Climate-driven increases in global terrestrial net primary production from 1982 to 1999’, Science 300, 1560–1563CrossRefGoogle Scholar
  45. New, M. G., Hulme, M., and Jones, P. D.: 2000, ‘Representing twentieth-century space-time climate variability, Part II, Development of 1901–1996 monthly grids of terrestrial surface climate’, Journal of Climate 13, 2217–2238.CrossRefGoogle Scholar
  46. Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., and Wallace, D. W. R. L.: 2001, ‘The carbon cycle and atmospheric carbon dioxide’, in J. T. Houghton et al. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, New York, pp. 185–237.Google Scholar
  47. Prentice, I. C., Heimann, M., and Sitch, S.: 2000, ‘The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations’, Ecological Applications 10, 1553–1573.CrossRefGoogle Scholar
  48. Plattner, G-K., Joos, F., and Stocker, T. F.: 2002, ‘Revision of the global carbon budget due to changing air-sea oxygen fluxes’, Global Biogeochemical Cycles 16(4), 1096, doi:10.1029/2001GB001746.CrossRefGoogle Scholar
  49. Roeckner, E., Oberhuber, J. M., Bacher, A, Christoph, M., and Kirchner, I.: 1996, ‘ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM’, Climate Dynamics 12, 737–754.CrossRefGoogle Scholar
  50. Ryan, M. G.: 1991, ‘Sapwood Volume for three subalbine conifers: predictive equations and ecological implications’, Canadian Journal of Forest Research, 19, 1397–1401.CrossRefGoogle Scholar
  51. Ryan, M. G.: 1991, ‘SapwoodVolume for three subalbine conifers: Predictive equations and ecological implications’, Canadian Journal of Forest Research 19, 1397–1401.CrossRefGoogle Scholar
  52. Schultz, J.: 2000, Handbuch der Ökozonen, Ulmer, Stuttgart.Google Scholar
  53. Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: 2003, ‘Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model’, Global Change Biology 9, 161–185.CrossRefGoogle Scholar
  54. Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., and Rey, A.: 2003, ‘Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes’, European Journal of Soil Science 54, 779–791.CrossRefGoogle Scholar
  55. Sprugel, D. G., Ryan, M. G., and Renee Brooks, J.: 1995, ‘Respiration from the organ level to the stand’, Resource Physiology of Conifers, Academic Press, San Diego, California, pp. 255–300.Google Scholar
  56. Stieglitz, M., Giblin, A., Hobbie, J., Williams, M. and Kling, G.: 2000, ‘Simulating the effects of climate change and climate variability on carbon dynamics in Arctic tundra’, Global Biogeochemical Cycles 14(4), 1123–1136.CrossRefGoogle Scholar
  57. Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: 2001, ‘The role of fire disturbance for global vegetation dynamics: Coupling fire into a dynamic global vegetation model’, Global Ecology {&} Biogeography 10, 661–677CrossRefGoogle Scholar
  58. Wagner, W., Scipal, K., Pathe, C., Gerten, D., Lucht, W., and Rudolf, B.: 2003, ‘Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data’, Journal of Geophysical Research 108(D19), 4611, doi:10.1029/2003JD003663.CrossRefGoogle Scholar
  59. White, A., Cannell, M. R., and Friend, A. D.: 2000: ‘CO2 stabilization, climate change and the terrestrial carbon sink’, Global Change Biology 6, 817–833.CrossRefGoogle Scholar
  60. Zhou, L., Tucker, C., Kaufmann, R., Slayback, D., Shabanov, N., Fung, I., and Myneni, R.: 2001, ‘Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999’, Journal of Geophysical Research 106, 20069–20084.CrossRefGoogle Scholar
  61. Zobler, L.: 1986, ‘A world soil file for global climate modelling’, NASA Technical Memorandum 87802, NASA Goddard Institute for Space Studies, New York, U.S.A.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Sibyll Schaphoff
    • 1
    Email author
  • Wolfgang Lucht
    • 1
  • Dieter Gerten
    • 1
  • Stephen Sitch
    • 1
  • Wolfgang Cramer
    • 1
  • I. Colin Prentice
    • 2
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.QUEST, Department of Earth SciencesUniversity of BristolBristolUK

Personalised recommendations